Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ansari, Mohd Zahid

  • Google
  • 10
  • 54
  • 260

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Numerical crashworthiness analysis of 2014 Aluminium- Silicon Carbide Particle (SiCp) foam filled Carbon Fiber-Reinforced Plastic (CFRP) tube under impact loadingcitations
  • 2024Designing of high performance MoS<sub>2</sub>@VZnS//AC hybrid battery supercapacitor device for the electrochemical energy storage and glucose detection4citations
  • 2023Structural study of atomically precise doped Au38-xAgx NCs@ ZIF-8 electrode material for energy storage application9citations
  • 2023Hole-Transport Material Engineering in Highly Durable Carbon-Based Perovskite Photovoltaic Devices10citations
  • 2023Preparation of wafer-scale highly conformalamorphous hafnium dioxide thin films by atomic layer deposition using a thermally stable boratabenzene ligand-containing hafnium precursor ; Příprava vysoce konformních tenkých filmů amorfního oxidu hafničitého pomocí depozice atomární vrstvev za použití tepelně stabilního prekurzoru hafnia obsahujícího boratabenzenový ligand pokrývajících velké plochy4citations
  • 2023In Situ Grown Heterostructure Based on MOF-Derived Carbon Containing n-Type Zn-In-S and Dry-Oxidative p-Type CuO as Pseudocapacitive Electrode Materials73citations
  • 2023Understanding the Diffusion-Dominated Properties of MOF-Derived Ni–Co–Se/C on CuO Scaffold Electrode using Experimental and First Principle Study61citations
  • 2022Factors affecting the growth formation of nanostructures and their impact on electrode materials51citations
  • 2022Effect of growth duration of Zn0.76Co0.24S interconnected nanosheets for high-performance flexible energy storage electrode materials29citations
  • 2021Low-temperature growth of crystalline Tin(II) monosulfide thin films by atomic layer deposition using a liquid divalent tin precursor ; Nízkoteplotní růst tenkých vrstev krystalického monosulfidu cínatého pomocí depozice atomových vrstev s využitím kapalného prekurzoru dvojmocného cínu19citations

Places of action

Chart of shared publication
Vusa, Venkata Ravi
1 / 1 shared
Kumar, Pradeep
1 / 8 shared
Cho, Chongdu
1 / 2 shared
Sahu, Sonika
1 / 1 shared
Dhimole, Vivek Kumar
1 / 2 shared
Akhtar, Nabila
1 / 1 shared
Afzal, Amir M.
1 / 1 shared
Safdar, Samia
1 / 2 shared
Bahajjaj, Aboud Ahmed Awadh
1 / 4 shared
Muzaffar, Nimra
1 / 4 shared
Imran, Muhammad
2 / 60 shared
Iqbal, Muhammad Waqas
1 / 15 shared
Zhuang, Shengli
1 / 1 shared
Ahmad, Muhammad
5 / 23 shared
Low, Kam-Hung
1 / 1 shared
Chen, Xi
3 / 20 shared
He, Jian
1 / 3 shared
Liu, Li-Juan
1 / 1 shared
Hussain, Iftikhar
5 / 17 shared
Nawaz, Tehseen
3 / 8 shared
Gholipour, Somayeh
1 / 4 shared
Amin, Mohammed A.
1 / 1 shared
Rahighi, Reza
1 / 1 shared
Janíček, Petr
2 / 10 shared
Nandi, Dip K.
2 / 2 shared
An, Ki-Seok
1 / 1 shared
Cheon, Taehoon
1 / 1 shared
Park, Ye Jin
1 / 1 shared
Hong, Tae Eun
1 / 1 shared
Bae, Jong-Seong
1 / 3 shared
Namgung, Sook
1 / 1 shared
Jang, Yujin
1 / 1 shared
Kim, Soo-Hyun
2 / 2 shared
Cho, Bo Yeon
1 / 1 shared
Song, Wooseok
1 / 3 shared
Kaewmaraya, Thanayut
2 / 4 shared
Lamiel, Charmaine
4 / 6 shared
Qin, Ning
2 / 2 shared
Hussain, Tanveer
2 / 11 shared
Javed, Muhammad Sufyan
3 / 10 shared
Ali, Awais
1 / 1 shared
Sajjad, Muhammad
1 / 10 shared
Khan, Karim
1 / 1 shared
Sahoo, Sumanta
1 / 3 shared
Niazi, Javed H.
1 / 1 shared
Qureshi, Anjum
1 / 1 shared
Khan, Shahid Ali
1 / 3 shared
Shaheen, Irum
1 / 10 shared
Abbas, Nadir
1 / 1 shared
Ali, Ijaz
1 / 5 shared
Šlang, Stanislav
1 / 18 shared
Shong, Bonggeun
1 / 1 shared
Oh, Hongjun
1 / 1 shared
Bouška, Marek
1 / 6 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Vusa, Venkata Ravi
  • Kumar, Pradeep
  • Cho, Chongdu
  • Sahu, Sonika
  • Dhimole, Vivek Kumar
  • Akhtar, Nabila
  • Afzal, Amir M.
  • Safdar, Samia
  • Bahajjaj, Aboud Ahmed Awadh
  • Muzaffar, Nimra
  • Imran, Muhammad
  • Iqbal, Muhammad Waqas
  • Zhuang, Shengli
  • Ahmad, Muhammad
  • Low, Kam-Hung
  • Chen, Xi
  • He, Jian
  • Liu, Li-Juan
  • Hussain, Iftikhar
  • Nawaz, Tehseen
  • Gholipour, Somayeh
  • Amin, Mohammed A.
  • Rahighi, Reza
  • Janíček, Petr
  • Nandi, Dip K.
  • An, Ki-Seok
  • Cheon, Taehoon
  • Park, Ye Jin
  • Hong, Tae Eun
  • Bae, Jong-Seong
  • Namgung, Sook
  • Jang, Yujin
  • Kim, Soo-Hyun
  • Cho, Bo Yeon
  • Song, Wooseok
  • Kaewmaraya, Thanayut
  • Lamiel, Charmaine
  • Qin, Ning
  • Hussain, Tanveer
  • Javed, Muhammad Sufyan
  • Ali, Awais
  • Sajjad, Muhammad
  • Khan, Karim
  • Sahoo, Sumanta
  • Niazi, Javed H.
  • Qureshi, Anjum
  • Khan, Shahid Ali
  • Shaheen, Irum
  • Abbas, Nadir
  • Ali, Ijaz
  • Šlang, Stanislav
  • Shong, Bonggeun
  • Oh, Hongjun
  • Bouška, Marek
OrganizationsLocationPeople

article

Structural study of atomically precise doped Au38-xAgx NCs@ ZIF-8 electrode material for energy storage application

  • Ansari, Mohd Zahid
  • Zhuang, Shengli
  • Ahmad, Muhammad
  • Low, Kam-Hung
  • Chen, Xi
  • He, Jian
  • Liu, Li-Juan
  • Hussain, Iftikhar
  • Nawaz, Tehseen
Abstract

Fast-charging storage devices have attained attention in recent years due to their prospective wide range of applications in microelectronic gadgets and hybrid electric vehicles. In the pursuit of new efficient high-capacity electrodes, the implication of atomically precise metal nanoclusters (NCs) in the field of supercapacitors is rare. Herein, structurally distorted atomically precise doped Au<sub>38-<i>x</i></sub>Ag<sub><i>x</i></sub> NCs protected by 2,4-dimethylbenzenethiolate (2,4-DMBT) were synthesized by doping Ag atoms to the parent monometallic Au38 NCs. A general strategy to integrate structurally distorted atomically precise doped Au<sub>38-<i>x</i></sub>Ag<sub><i>x</i></sub> NCs with ZIF-8 (Au<sub>38-<i>x</i></sub>Ag<sub><i>x</i></sub> NCs@ZIF-8) was employed for methodical electrochemical and physicochemical studies of intrinsic energy storage mechanisms. The structural changes of doped Au<sub>38-<i>x</i></sub>Ag<sub><i>x</i></sub> NCs@ZIF-8 were systematically revealed and the effect of heteroatom doping, synergistic effect, reduced HOMO-LUMO gap (HLG) of highly distorted doped Au<sub>38-<i>x</i></sub>Ag<sub><i>x</i></sub> NCs@ZIF-8 resulted in enhanced electronic transfer kinetics, ultimately improving specific capacitance 2.2 times higher than the parent monometallic Au38 NCs. Doped Au<sub>38-<i>x</i></sub>Ag<sub><i>x</i></sub> NCs@ZIF-8 based hybrid supercapacitor (HSC) provides a high energy density of 14.75 Wh kg<sup>−1</sup> and power density of 2212.8 W kg<sup>−1</sup> . The development of structurally distorted atomically precise doped Au<sub>38-<i>x</i></sub>Ag<sub><i>x</i></sub> NCs@ZIF-8 electrode material can pave the ways for doped metal nanoclusters for next-generation energy storage devices.<br/><br/>© 2023 Elsevier B.V.<br/>

Topics
  • density
  • impedance spectroscopy
  • energy density