People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baniasadi, Hossein
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Polypyrrole-modified flax fiber sponge impregnated with fatty acids as bio-based form-stable phase change materials for enhanced thermal energy storage and conversioncitations
- 2024Polypyrrole-modified flax fiber sponge impregnated with fatty acids as bio-based form-stable phase change materials for enhanced thermal energy storage and conversioncitations
- 2024Fabrication of biocomposite materials with polycaprolactone and activated carbon extracted from agricultural wastecitations
- 2024Exploring the potential of regenerated Ioncell fiber composites: a sustainable alternative for high-strength applicationscitations
- 2024Elucidating the enduring transformations in cellulose-based carbon nanofibers through prolonged isothermal treatmentcitations
- 2024Wood flour and Kraft lignin enable air-drying of the nanocellulose-based 3D-printed structurescitations
- 2024Recycled carbon fiber reinforced composites: Enhancing mechanical properties through co-functionalization of carbon nanotube-bonded microfibrillated cellulosecitations
- 2024A cradle-to-gate life cycle assessment of polyamide-starch biocomposites: carbon footprint as an indicator of sustainabilitycitations
- 2023Strontium-Substituted Nanohydroxyapatite-Incorporated Poly(lactic acid) Composites for Orthopedic Applications: Bioactive, Machinable, and High-Strength Propertiescitations
- 2023Flexible and conductive nanofiber textiles for leakage-free electro-thermal energy conversion and storagecitations
- 2023Heat-Induced Actuator Fibers: Starch-Containing Biopolyamide Composites for Functional Textilescitations
- 2023High-concentration lignin biocomposites with low-melting point biopolyamidecitations
- 2023Innovative integration of pyrolyzed biomass into polyamide 11: Sustainable advancements through in situ polymerization for enhanced mechanical, thermal, and additive manufacturing propertiescitations
- 2021Exfoliated clay nanocomposites of renewable long-chain aliphatic polyamide through in-situ polymerizationcitations
- 2021Sustainable composites of surface-modified cellulose with low-melting point polyamidecitations
- 2021Novel long-chain aliphatic polyamide/surface-modified silicon dioxide nanocomposites: in-situ polymerization and propertiescitations
- 2021Alginate/cartilage extracellular matrix-based injectable interpenetrating polymer network hydrogel for cartilage tissue engineeringcitations
- 2021Selective Laser Sintering of Lignin-Based Compositescitations
- 20213D-Printed Thermoset Biocomposites Based on Forest Residues by Delayed Extrusion of Cold Masterbatch (DECMA)citations
- 2021High-Performance and Biobased Polyamide/Functionalized Graphene Oxide Nanocomposites through In Situ Polymerization for Engineering Applicationscitations
- 2015Investigation of thermomechanical properties of UHMWPE/graphene oxide nanocomposites prepared by in situ Ziegler–Natta polymerizationcitations
Places of action
Organizations | Location | People |
---|
article
High-concentration lignin biocomposites with low-melting point biopolyamide
Abstract
Blending polymers with a high concentration of bio-based fillers is one of the solutions that not only reduces a dependency on petroleum-based feedstocks but can also significantly decrease the carbon footprint. In the current study, n-octadecyl isocyanate (ODI) molecules were grafted on lignin particles to render them compatible with a novel copolyamide matrix, which was successfully synthesized through a copolymerization between petroleum- and bio-based monomers. Different concentrations of the surface-modified particles were melt-blended with a low-melting point copolyimide, and the properties of the developed biocomposites being thoroughly studied. The SEM imaging revealed that the surface-modified particles homogeneously dispersed into the polymer matrix for all loading levels without any clear evidence of particle agglomeration, phase separation, or voids formation, proposing excellent compatibility between the components that arose from a successful surface modification process. Furthermore, the mechanical properties of the biocomposites significantly improved. For instance, the yield stress and tensile modulus were enhanced by 50% and 200% at the biocomposite with 50 wt% filler content, without any considerable change in the tensile strain. The dynamic mechanical analysis, as well as the rheology measurements, further confirmed the uniform dispersion of the surface-modified particles and their compatibility with the copolymer matrix, within which the storage modulus considerably improved upon the increase of filler content. Overall, our findings strongly suggest that these newly developed biocomposites with a green content of up to 80% are attractive candidates for substituting petroleum-based plastics for the demanded applications. ; Peer reviewed