Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Leijten, Jeroen

  • Google
  • 5
  • 43
  • 480

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021In situ 3D printing of implantable energy storage devices34citations
  • 2020Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinkingcitations
  • 2020Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking66citations
  • 2020Engineering 3D parallelized microfluidic droplet generators with equal flow profiles by computational fluid dynamics and stereolithographic printing35citations
  • 2017Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs345citations

Places of action

Chart of shared publication
Kanjilal, Baishali
1 / 1 shared
Hesketh, Alexander
1 / 1 shared
Krishnadoss, Vaishali
1 / 1 shared
Khademhosseini, Ali
1 / 12 shared
Noshadi, Iman
1 / 1 shared
Akbard, Mohsen
1 / 1 shared
Miller, Caleb
1 / 1 shared
Mugweru, Amos
1 / 1 shared
Flores Gomez, Daniela
1 / 1 shared
Moreira Texeira, Liliana
1 / 1 shared
Piluso, Susanna
2 / 5 shared
Dokter, Inge
2 / 2 shared
Malda, Jos
2 / 39 shared
Karperien, Marcel
2 / 4 shared
Van Weeren, René
1 / 3 shared
Li, Yang
2 / 24 shared
Vermonden, Tina
2 / 14 shared
Gomez, Daniela Flores
1 / 1 shared
Texeira, Liliana Moreira
1 / 1 shared
Weeren, René Van
1 / 3 shared
Teixeira, Liliana Moreira
1 / 1 shared
Kamperman, Tom
1 / 1 shared
Salehi, Seyedeh Sarah
1 / 1 shared
Guyot, Yann
1 / 1 shared
Grijpma, Dirk
1 / 4 shared
Geven, Mike
1 / 1 shared
Blanquer, Sebastien
1 / 3 shared
Kerckhofs, Greet
1 / 12 shared
Geris, Liesbet
1 / 9 shared
Shin, S. R.
1 / 2 shared
Hu, N.
1 / 5 shared
Liu, X.
1 / 54 shared
Khademhosseini, A.
1 / 15 shared
Tamayol, A.
1 / 2 shared
Zhang, Y. S.
1 / 3 shared
Kempen, T. Van
1 / 1 shared
Li, Y.-C.
1 / 1 shared
Ponraj, V.
1 / 1 shared
Nasajpour, A.
1 / 1 shared
Lin, Y.-D.
1 / 1 shared
Mandla, S.
1 / 1 shared
Hussain, M. A.
1 / 2 shared
Zhu, K.
1 / 2 shared
Chart of publication period
2021
2020
2017

Co-Authors (by relevance)

  • Kanjilal, Baishali
  • Hesketh, Alexander
  • Krishnadoss, Vaishali
  • Khademhosseini, Ali
  • Noshadi, Iman
  • Akbard, Mohsen
  • Miller, Caleb
  • Mugweru, Amos
  • Flores Gomez, Daniela
  • Moreira Texeira, Liliana
  • Piluso, Susanna
  • Dokter, Inge
  • Malda, Jos
  • Karperien, Marcel
  • Van Weeren, René
  • Li, Yang
  • Vermonden, Tina
  • Gomez, Daniela Flores
  • Texeira, Liliana Moreira
  • Weeren, René Van
  • Teixeira, Liliana Moreira
  • Kamperman, Tom
  • Salehi, Seyedeh Sarah
  • Guyot, Yann
  • Grijpma, Dirk
  • Geven, Mike
  • Blanquer, Sebastien
  • Kerckhofs, Greet
  • Geris, Liesbet
  • Shin, S. R.
  • Hu, N.
  • Liu, X.
  • Khademhosseini, A.
  • Tamayol, A.
  • Zhang, Y. S.
  • Kempen, T. Van
  • Li, Y.-C.
  • Ponraj, V.
  • Nasajpour, A.
  • Lin, Y.-D.
  • Mandla, S.
  • Hussain, M. A.
  • Zhu, K.
OrganizationsLocationPeople

article

In situ 3D printing of implantable energy storage devices

  • Kanjilal, Baishali
  • Hesketh, Alexander
  • Krishnadoss, Vaishali
  • Khademhosseini, Ali
  • Leijten, Jeroen
  • Noshadi, Iman
  • Akbard, Mohsen
  • Miller, Caleb
  • Mugweru, Amos
Abstract

<p>The increasing demand for wearable bioelectronic devices has driven tremendous research effort on the fabrication of bioelectronics in microscale. To ensure the functionality and reliability, wearable bioelectronics need to be integrated with independent and internal energy storage systems to avoid frequent charging process from external sources. The supercapacitors has been considered as an electric energy source due to benefits such as a long cycle life, a high power density and fast charge–discharge rate. Miniaturization, biocompatibility, and biodegradability are the primary keys to achieving the requisites for implantable supercapacitors. Rapid, in situ 3D printing of implantable bioelectronic devices can address these needs. However, in situ 3D printing of bioelectronics using currently available materials has remained challenging due to their suboptimal physicochemical properties. Here, we present a novel material platform based on bio ionic liquid (BIL) functionalized biopolymers which can form a hydrogel electrolyte when exposed to visible light. Fine-structure, interdigitated, biocompatible, and implantable soft micro-supercapacitors (MSC) were created by 3D in situ bioprinting of these polymer electrolytes in combination with rheologically optimized graphene hydrogel-laponite (GH-L) blend as electrode material. The hydrogel electrolyte had a specific capacitance of ~ 200F/g, while the MSC had a specific capacitance of ~ 16 μF/g at a current density of 1 A/g, volumetric capacitance of ~ 44 μF/cm<sup>3</sup>, cyclic stability up to 10,000 cycles, energy densities nearly as high as implantable batteries, and a power density level of implantable supercapacitors. This novel material platform enables in situ 3D printing of flexible bioelectronics structures with integrated life-long power source.</p>

Topics
  • density
  • polymer
  • current density
  • biocompatibility