Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barros, A. L. F. De

  • Google
  • 1
  • 7
  • 144

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Asymmetric supercapacitor based on carbon nanofibers as the anode and two-dimensional copper cobalt oxide nanosheets as the cathode144citations

Places of action

Chart of shared publication
Kadirvelayutham, Prasanna
1 / 9 shared
Alves, C. H. F.
1 / 2 shared
Kim, Hee-Je
1 / 4 shared
Babu, R. Suresh
1 / 3 shared
Vinodh, R.
1 / 2 shared
Maier, M. A.
1 / 2 shared
Samyn, L. M.
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Kadirvelayutham, Prasanna
  • Alves, C. H. F.
  • Kim, Hee-Je
  • Babu, R. Suresh
  • Vinodh, R.
  • Maier, M. A.
  • Samyn, L. M.
OrganizationsLocationPeople

article

Asymmetric supercapacitor based on carbon nanofibers as the anode and two-dimensional copper cobalt oxide nanosheets as the cathode

  • Kadirvelayutham, Prasanna
  • Alves, C. H. F.
  • Barros, A. L. F. De
  • Kim, Hee-Je
  • Babu, R. Suresh
  • Vinodh, R.
  • Maier, M. A.
  • Samyn, L. M.
Abstract

This paper reports the fabrication of an ultra-high energy and power density asymmetric supercapacitor (ASC) containing a novel porous carbon nanofiber derived from hypercross-linked polymers (HCP-CNF) and two-dimensional copper cobalt oxide nanosheets (CCO-NS) as the negative and positive electrodes, respectively. The micropore-enriched HCP-CNF is obtained from a facile Friedel-Crafts reaction with naphthalene and α, α′-dichloro-<em>p</em>-xylene as the starting material. The CCO-NS have been prepared by a simple and inexpensive hydrothermal synthesis using polyvinylpyrrolidone (PVP) as a shape controlling agent. The fabricated CCO-NS//HCP-CNF ASC device exhibit a high specific capacitance, 244 F g<sup>−1</sup> at a current density of 1 A g<sup>−1</sup>, owing to the unique porous architecture of CCO-NS and the interconnected microporous carbon skeleton with a high surface area of HCP-CNF. Furthermore, the assembled ASC device show an ultra-high energy density of 25.1 Wh kg<sup>−1</sup> at a power density of 400 W kg<sup>−1</sup> with maximum operating voltage of 1.60 V. The electrode shows good capacitance retention (91.1%) after 5000 cycles in a 3 M aqueous KOH solution. In addition, two ASC devices are connected in series powered a 5 mm diameter LED indicator for approximately 30 min, highlighting its efficient power supply.

Topics
  • porous
  • density
  • impedance spectroscopy
  • surface
  • polymer
  • Carbon
  • energy density
  • copper
  • two-dimensional
  • cobalt
  • current density