People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kuipers, Hans
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Hydrodynamics inside packed beds of spherocylinders; Magnetic Resonance Imaging and Pore Network Modelling approaches
- 2020Numerical simulations of bubble formation in liquid metalcitations
- 2017Experimental and simulation study of heat transfer in fluidized beds with heat productioncitations
- 2017Elastic instabilities in pillared micro channels in effect to polymer flooding
- 2017Elastic instabilities in pillared micro channels in effect to polymer flooding
- 2012Experimental study of large scale fluidized beds at elevated pressurecitations
- 2008Simulation of density segregation in vibrated bedscitations
- 2005Modeling and chemical vapor deposition in a fluidized bed reactor based on discrete particle simulation
- 2001Radial distribution of ions in pores with a surface chargecitations
Places of action
Organizations | Location | People |
---|
article
Experimental and simulation study of heat transfer in fluidized beds with heat production
Abstract
As a result of highly exothermic reactions during gas-phase olefin polymerization in fluidized bed reactors, difficulties with respect to the heat management play an important role in the optimization of these reactors. To obtain a better understanding of the particle temperature distribution in fluidized beds, a high speed infrared (IR) camera and a visual camera have been coupled to capture the hydrodynamic and thermal behavior of a pseudo-2D fluidized bed. The experimental data were subsequently used to validate an in-house developed computational fluid dynamics and discrete element model (CFD-DEM). In order to mimic the heat effect due to the exothermic polymerization reaction, a model system was used. In this model system, heat is released in zeolite 13X particles (1.8–2.0 mm, Geldart D type) due to the adsorption of CO2. All key aspects of the adsorption process (kinetics, equilibrium and heat effect) were studied separately using Thermogravimetric Analysis (TGA) and Simultaneous Thermal Analysis (STA), and subsequently fluidized bed experiments were conducted, by feeding gas mixtures of CO2 and N2 with different CO2concentrations to the bed, where the total heat of liberation could be controlled. The combined infrared/visual camera technique generated detailed information on the thermal behavior of the bed. Furthermore, the comparison of the spatial and temporal distributions of the particle temperature measured in the fluidized bed with the simulation results of CFD-DEM provides qualitative and quantitative validation of the CFD-DEM, in particular concerning the thermal aspects.