Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhu, Qingyu

  • Google
  • 2
  • 2
  • 132

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Adsorption of pyridine from aqueous solutions by polymeric adsorbents MN 200 and MN 500. Part 2: Kinetics and diffusion analysis99citations
  • 2015A local composition model for the prediction of mutual diffusion coefficients in binary liquid mixtures from tracer diffusion coefficients33citations

Places of action

Chart of shared publication
Moggridge, Geoff D.
2 / 3 shared
Dagostino, Carmine
2 / 7 shared
Chart of publication period
2016
2015

Co-Authors (by relevance)

  • Moggridge, Geoff D.
  • Dagostino, Carmine
OrganizationsLocationPeople

article

Adsorption of pyridine from aqueous solutions by polymeric adsorbents MN 200 and MN 500. Part 2: Kinetics and diffusion analysis

  • Moggridge, Geoff D.
  • Dagostino, Carmine
  • Zhu, Qingyu
Abstract

The adsorption kinetics of pyridine adsorption on Macronet adsorbents MN 200 and MN 500 from aqueous solution was investigated at various initial pyridine concentrations and temperatures. The Weber-Morris plots revealed the influence of both external film diffusion and intraparticle diffusion resistances. The two linear regions in Weber-Morris plots were attributed to macropore and micropore diffusion, respectively, which was associated to the bimodal pore size distribution of the adsorbents. New insights into the diffusion mechanisms were highlighted, with the proposed internal film diffusion resistance dominating into the macropore region, whereas homogeneous particle diffusion resistance describes diffusion in the micropore region. The importance of pore and surface diffusion in the micropores was noted in contributing to the observed diffusion kinetics. The pore diffusion coefficient was estimated from PFG (pulsed-field gradient) parameter and molecular diffusion coefficient of pyridine in bulk liquid. A greater contribution of the surface diffusion to the overall diffusion kinetics was found for MN 500 as inferred from a proposed calculation method, which agrees with its better adsorption performance. The overall findings highlight the effect of pore structure onto the diffusion mechanisms inside the pores and help to gain a better understanding into the adsorption kinetics of these Macronet adsorbents which are promising materials for the removal of N-heterocyclic compounds from waste water. ; Wolfson College, Cambridge ; This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.cej.2016.07.087

Topics
  • impedance spectroscopy
  • pore
  • surface
  • compound