People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salunkhe, Rahul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Rapid electronic transport channel of Co‐P with Mo in a heterostructure embedded with P, N dual doped porous carbon for electrocatalytic oxygen and hydrogen evolutioncitations
- 2014Presenting highest supercapacitance for TiO2/MWNTs nanocomposites: Novel methodcitations
- 2010Room temperature LPG sensor based on n-CdS/p-polyaniline heterojunctioncitations
- 2010Effect of electron irradiation on properties of chemically deposited TiO2 nanorodscitations
- 2010Conversion of interlocked cube-like Mn3O4 into nanoflakes of layered birnessite MnO2 during supercapacitive studiescitations
- 2010Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor applicationcitations
- 2010Fabrication of copper oxide multilayer nanosheets for supercapacitor applicationcitations
- 2009A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor applicationcitations
Places of action
Organizations | Location | People |
---|
article
Presenting highest supercapacitance for TiO2/MWNTs nanocomposites: Novel method
Abstract
A facile two step, binder-free method is successfully developed for the synthesis of TiO2 nanodots on the walls of multi-walled carbon nanotubes (MWNTs). TiO2/MWNTs nanocomposite exhibited excellent specific capacitance and stability as supercapacitor electrode materials due to the synergistic effect of both components as well as the nanodots-like structure of TiO2, which increases the specific surface area of the nanocomposite. The TiO2/MWNTs prepared by this binder-free approach yields the largest specific and interfacial capacitances of 329Fg-1 and 52mFcm-2 at a scan rate of 0.005Vs-1, which is the utmost value of capacitance obtained till date. Importantly, TiO2/MWNTs showed remarkable rate capability with 6mFcm-2 capacitance at higher scan rate (0.4Vs-1) with good long-term cycling stability. The Ragone plot of TiO2/MWNTs nanocomposite discovers better power and energy density values. Lastly, the method used here is promising for producing high performance supercapacitors which can be scalable for large area application for industrial route.