People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chiriac, Rodica Elena
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2019High-temperature-reactivity of Al–Ti alloys in contact with SiCcitations
- 2015Thermal conductivity of polyimide/boron nitride nanocomposite filmscitations
- 2014Simultaneous precipitation of magnesite and lizardite from hydrothermal alteration of olivine under high-carbonate alkalinitycitations
- 2013Sequential precipitation of a new goethite-calcite nanocomposite and its possible application in the removal of toxic ions from polluted watercitations
- 2013Enhancement of Thermal Conduction of Polyimide/Boron Nitride Nanocompositescitations
- 2008Details on the formation of Ti2Cu3 in the Ag-Cu-Ti system in the temperature range 790-860 °Ccitations
Places of action
Organizations | Location | People |
---|
article
Sequential precipitation of a new goethite-calcite nanocomposite and its possible application in the removal of toxic ions from polluted water
Abstract
This study proposes a simple and innovative synthesis route for a goethite-calcite nanocomposite. This synthesis is summarized by three sequential precipitation reactions: (1) precipitation of nanosized acicular goethite (α-FeOOH) using a high OH/Fe molar ratio (=5); (2) instantaneous precipitation of portlandite (Ca(OH)2) by adding CaCl2 salt to a goethite alkaline suspension (2NaOH + CaCl2=Ca(OH)2 + 2NaCl) and; (3) sub-micrometric calcite precipitation by injection of CO2 into a goethite-portlandite alkaline suspension (Ca(OH)2 + CO2=CaCO3+H2O). The XRD patterns have confirmed the goethite and calcite mineral composition in the composite precipitated at 30 and 70°C. FESEM and TEM observations have revealed the formation of nanosized goethite particles well dispersed with sub-micrometric calcite particles, leading to an orange-brown colour nanocomposite with high specific surface area of around 92 m2/g for a composite synthesized at 30°C and 45 m2/g for a composite synthesized at 70°C. Both values were determined using the conventional BET method on N2 sorption isotherms. Finally, a goethite/calcite weight ratio equal to 0.8 in the composite was determined by thermogravimetric analysis (TGA). Additionally, some adsorption experiments carried out at two different pH values revealed that the goethite-calcite composite has a good sequestration capacity for Cu>Cd>As(III)>Se(IV)>As(V). Conversely, the Se(VI) did not show any chemical affinity with the goethite-calcite composite under the physico-chemical conditions studied. In practice, the goethite-calcite composite can neutralise acidic wastewater by slight calcite dissolution, enhancing the removal of heavy metals (e.g. Cu and Cd) at the calcite-solution interfaces.