People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rebrov, Evgeny V.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Process intensification for gram-scale synthesis of N-doped carbon quantum dots immersing a microplasma jet in a gas-liquid reactorcitations
- 2020Non-thermal plasma for process and energy intensification in dry reforming of methanecitations
- 2019Enhanced Droplet Size Control in Liquid-Liquid Emulsions Obtained in a Wire-Guided X-Mixercitations
- 2019Enhanced Droplet Size Control in Liquid-Liquid Emulsions Obtained in a Wire-Guided X-Mixercitations
- 2015Mechanochemical synthesis of TiO2/NiFe2O4 magnetic catalysts for operation under RF fieldcitations
- 2011Structural and magnetic properties of sol-gel Co2xNi0.5-x Zn0.5-xFe2)4 thin filmscitations
- 2010Structural investigations and magnetic properties of sol-gel Ni(0.5)Zn(0.5)Fe2O4 thin films for microwave heatingcitations
- 2010Use of microtechnologies for intensifying industrial processescitations
- 2009Selective hydrogenation of acetylene alcohols over a Pd/TiO2 coating in a capillary microreactor
- 2009Confined palladium colloids in mesoporous frameworks for carbon nanotube growthcitations
- 2009Determination of the Tolman length in the improved Derjaguin-Broekhoff-de Boer theory for capillary condensation of ethanol in mesoporous thin films by ellipsometric porosimetrycitations
- 2009Method for control of the thickness of mesoporous titania films for applications in catalytic microreactors
- 2009Thin catalytic coatings on microreactor walls: a way to make industrial processes more efficient
- 2008Oxidation of organic compounds in a microstructured catalytic reactorcitations
- 2008Microwave-assisted hydrothermal synthesis of zeolite Beta coatings on ALD-modified borosilicate glass for application in microstructured reactorscitations
- 2008Mesoporous silica films as catalyst support for microstructured reactors: preparation and characterizationcitations
- 2008Gold supported on mesoporous titania thin films for application in microstructured reactors in low-temperature water-gas shift reactioncitations
- 2007Method for the in situ preparation of a single layer of zeolite beta crystals on a molybdenum substrate for microreactor applicationscitations
- 2007Film properties and in-situ optical analysis of TiO2 layers synthesized by remote plasma ALD
- 2006Preparation and characterization of bimetallic catalysts supported on mesoporous silica filmscitations
- 2005Optimization of anodic oxidation and Cu-Cr oxide catalyst preparation on structured aluminum plates processed by electro discharge machiningcitations
- 2003Challenging prospects for microstructured reaction architectures. (1). Zeolite coating synthesis and high-throughput experimentation in a microreactor
Places of action
Organizations | Location | People |
---|
article
Mesoporous silica films as catalyst support for microstructured reactors: preparation and characterization
Abstract
Mesoporous silica thin films with hexagonal and cubic mesostructure have been deposited by the evaporation induced self-assembly assisted sol–gel route on microchannels etched in a Pyrex® 7740 borosilicate glass substrate. Prior to the synthesis, a 50 nm TiO2 film has been deposited on the substrate by atomic layer deposition from titanium tetrachloride and water to increase adhesion of the mesoporous films to the walls of the substrate. The mesoporous films were produced by templating a silica precursor (TEOS) with the non-ionic surfactant Pluronic F127 (EOxPOyEOx, EO, ethylene oxide; PO, propylene oxide; x = 106; y = 70). The effect of the channel aspect ratio on the uniformity of the silica films was investigated in the channels with a depth of 50 µm and with a width of 100–250 µm. Depending on the microchannel geometry, the thickness along the channels varies in the range of 0.3–1.0 µm. The most uniform films across the whole channel cross-section were obtained at the width-to-depth ratio of 3. Afterwards, the mesoporous films were impregnated with an ether–dichloromethane suspension of [PPN]2[Ru10Pt2C2(CO)28] mixed-metal cluster precursor to obtain well-dispersed, isolated and anchored bimetallic nanoparticles of 3–4 nm in diameter