Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ceia, Tiago F.

  • Google
  • 1
  • 6
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014PVA composite catalytic membranes for hyacinth flavour synthesis in a pervaporation membrane reactor33citations

Places of action

Chart of shared publication
Vaz Pinto, Joana
1 / 12 shared
Vital, Joaquim
1 / 1 shared
Ramos, António Pinho
1 / 6 shared
Ribeiro, C. S.
1 / 2 shared
Silva, A. G.
1 / 3 shared
Casimiro, M. H.
1 / 4 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Vaz Pinto, Joana
  • Vital, Joaquim
  • Ramos, António Pinho
  • Ribeiro, C. S.
  • Silva, A. G.
  • Casimiro, M. H.
OrganizationsLocationPeople

article

PVA composite catalytic membranes for hyacinth flavour synthesis in a pervaporation membrane reactor

  • Vaz Pinto, Joana
  • Vital, Joaquim
  • Ramos, António Pinho
  • Ribeiro, C. S.
  • Ceia, Tiago F.
  • Silva, A. G.
  • Casimiro, M. H.
Abstract

Composite catalytic membranes consisting of poly(vinyl alcohol) cross-linked with glutaraldehyde and H-USY zeolite dispersed into the polymeric matrix were prepared and used in the hyacinth flavour synthesis by acetalization of phenylacetaldehyde and glycerol. In order to study the effects of catalyst loading, polymer cross-linking and hydrophilic/hydrophobic balance in the catalytic behaviour of the prepared membranes, catalytic runs were performed in batch conditions and in a pervaparation assisted catalytic membrane reactor. It was found that polymer cross-linking strongly affects the membranes' sorption and transport properties which seem to improve with the increase of catalyst loading. Results also evidence that permeation in membrane reactor was well accomplished with good selectivity to water. The catalytic membranes were characterized by measurement of thickness, water contact angles and swelling degree as well as by Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM). © 2014 Elsevier B.V. All rights reserved.

Topics
  • polymer
  • scanning electron microscopy
  • atomic force microscopy
  • composite
  • Fourier transform infrared spectroscopy
  • alcohol