People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kwaśniak, Piotr
Cardinal Stefan Wyszyński University in Warsaw
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022Heat Treatment of NiTi Alloys Fabricated Using Laser Powder Bed Fusion (LPBF) from Elementally Blended Powderscitations
- 2021Ab Initio Study of the Influence of Alloying Elements on Stability and Mechanical Properties of Selected TixAly Intermetallic Compounds and Their TixAly/Al, TixAly/Ti Interfaces in Explosively Welded Metal–Metal Compositescitations
- 2016Experimental and ab-initio study of the Zr- and Cr-enriched aluminide layer produced on an IN 713C Inconel substrate by CVD; investigations of the layer morphology, structural stability, mechanical properties, and corrosion resistancecitations
- 2016Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia processcitations
- 2013Investigation of degradation mechanism of palladium-nickel wires during oxidation of ammoniacitations
Places of action
Organizations | Location | People |
---|
article
Investigation of degradation mechanism of palladium-nickel wires during oxidation of ammonia
Abstract
The process of oxidation of ammonia proceeds in 800–900 °C with high reactivity hydrogen discharge. Extremely aggressive environment and temperature require using the most chemically resistant materials with catalysis properties. One of the main groups of those materials is palladium–nickel alloys. In our investigation we focused on analysis of PdNi5 degradation during catalysis process. The investigation was performed on 78 μm diameter wires after long exposition to chemically aggressive environment. The samples were prepared with focused ion beam (FIB) system. The observations of surface and wire cross sections were executed using a scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) device, which allowed defining chemical composition. The effect of a grain orientation on sensitivity to reaction with ammonia gas was tested by mapping with electron backscatter diffraction (EBSD) techniques. Significant change of wire cross section after long exposition was determined by 3D X-ray computer tomography (XCT). The obtained results can be basis of further investigation on improvement of strength of PdNi alloys in high temperature chemical application.