Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Johnson, Bradley R.

  • Google
  • 18
  • 62
  • 55

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2019Solid Secondary Waste Immobilization in Cementitious Waste Forms at the Hanford Site - 19081citations
  • 2014Preliminary Phase Field Computational Model Developmentcitations
  • 2013Sublimation-Condensation of Multiscale Tellurium Structures5citations
  • 2009Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress reportcitations
  • 2009DC Ionization Conductivity of Amorphous Semiconductors for Radiation Detection Applications3citations
  • 2008ASGRAD FY07 Annual Reportcitations
  • 2008FY 2008 Infrared Photonics Final Reportcitations
  • 2007Engineered SMR catalysts based on hydrothermally stable, porous, ceramic supports for microchannel reactors42citations
  • 2007FY06 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)citations
  • 2007Differential etching of chalcogenides for infrared photonic waveguide structures5citations
  • 2006Summary of Chalcogenide Glass Processing: Wet-Etching and Photolithographycitations
  • 2006Pressure-temperature dependence of nanowire formation in the arsenic-sulfur systemcitations
  • 2005Microstructural and Microchemical Characterization of Primary-Side Cracks in an Alloy 600 Nozzle Head Penetration and its Alloy 182 J-Weld from the Davis-Besse Reactor Vesselcitations
  • 2005FY 2005 Miniature Spherical Retroreflectors Final Reportcitations
  • 2005FY 2005 Infrared Photonics Final Reportcitations
  • 2004Laser Writing in Arsenic Trisulfide Glasscitations
  • 2004FY 2004 Infrared Photonics Final Reportcitations
  • 2004Chalcogenide glasses and structures for quantum sensingcitations

Places of action

Chart of shared publication
Saslow, Sarah A.
1 / 2 shared
Smith, Gary L.
1 / 2 shared
Asmussen, R. Matthew
1 / 1 shared
Neeway, James J.
1 / 4 shared
Varga, Tamas
1 / 9 shared
Brown, Elvie
1 / 1 shared
Swanberg, David J.
1 / 2 shared
Westsik, Jr., Joseph H.
1 / 1 shared
Xu, Ke
1 / 15 shared
Ramuhalli, Pradeep
1 / 1 shared
Suter, Jonathan D.
1 / 1 shared
Mccloy, John S.
3 / 8 shared
Li, Yulan
1 / 3 shared
Hu, Shenyang Y.
1 / 2 shared
Schaef, Herbert T.
1 / 1 shared
Sundaram, S. K.
11 / 11 shared
Riley, Brian J.
10 / 14 shared
Mcmakin, Douglas L.
1 / 1 shared
Jordan, David V.
1 / 1 shared
Kelly, James F.
1 / 1 shared
Campbell, Luke W.
1 / 1 shared
Ryan, Joseph V.
1 / 3 shared
Crum, Jarrod V.
3 / 3 shared
Seifert, Carolyn E.
2 / 2 shared
Van Ginhoven, Renee M.
2 / 2 shared
Henager, Charles H.
2 / 3 shared
Rockett, Angus
1 / 4 shared
Aquino, Angel
1 / 1 shared
Krishnaswami, Kannan
2 / 2 shared
Carlie, Nathan A.
1 / 1 shared
Gervais, Kevin L.
1 / 1 shared
Hatchell, Brian K.
1 / 1 shared
Bernacki, Bruce E.
2 / 2 shared
Phillips, Mark C.
1 / 1 shared
Anheier, Norman C.
6 / 6 shared
Qiao, Hong
3 / 3 shared
Dagle, Robert A.
1 / 1 shared
Wang, Yong
1 / 21 shared
Tran, Diana N.
1 / 1 shared
Holladay, Jamie D.
1 / 1 shared
Li, Xiaohong S.
1 / 1 shared
Canfield, Nathan L.
1 / 2 shared
Zhang, Yanwen
1 / 22 shared
Shutthanandan, V.
1 / 2 shared
Saraf, Laxmikant V.
3 / 3 shared
Olmstead, Juliana D.
1 / 1 shared
Engelhard, Mark H.
1 / 4 shared
Williford, Rick E.
1 / 1 shared
Vetrano, John S.
1 / 1 shared
Bruemmer, Stephen M.
1 / 2 shared
Thomas, L.
1 / 9 shared
Sliger, William A.
1 / 1 shared
Riley, Bradley M.
1 / 1 shared
Martinez, James E.
3 / 3 shared
Ho, Nicolas
1 / 1 shared
Schultz, John F.
3 / 3 shared
Allen, Paul J.
3 / 3 shared
Keller, Paul E.
1 / 1 shared
Bennett, Wendy D.
1 / 1 shared
Martin, Peter M.
1 / 1 shared
Manijeh Razeghi, Gail J. Brown
1 / 1 shared
Schweiger, Michael J.
1 / 3 shared
Chart of publication period
2019
2014
2013
2009
2008
2007
2006
2005
2004

Co-Authors (by relevance)

  • Saslow, Sarah A.
  • Smith, Gary L.
  • Asmussen, R. Matthew
  • Neeway, James J.
  • Varga, Tamas
  • Brown, Elvie
  • Swanberg, David J.
  • Westsik, Jr., Joseph H.
  • Xu, Ke
  • Ramuhalli, Pradeep
  • Suter, Jonathan D.
  • Mccloy, John S.
  • Li, Yulan
  • Hu, Shenyang Y.
  • Schaef, Herbert T.
  • Sundaram, S. K.
  • Riley, Brian J.
  • Mcmakin, Douglas L.
  • Jordan, David V.
  • Kelly, James F.
  • Campbell, Luke W.
  • Ryan, Joseph V.
  • Crum, Jarrod V.
  • Seifert, Carolyn E.
  • Van Ginhoven, Renee M.
  • Henager, Charles H.
  • Rockett, Angus
  • Aquino, Angel
  • Krishnaswami, Kannan
  • Carlie, Nathan A.
  • Gervais, Kevin L.
  • Hatchell, Brian K.
  • Bernacki, Bruce E.
  • Phillips, Mark C.
  • Anheier, Norman C.
  • Qiao, Hong
  • Dagle, Robert A.
  • Wang, Yong
  • Tran, Diana N.
  • Holladay, Jamie D.
  • Li, Xiaohong S.
  • Canfield, Nathan L.
  • Zhang, Yanwen
  • Shutthanandan, V.
  • Saraf, Laxmikant V.
  • Olmstead, Juliana D.
  • Engelhard, Mark H.
  • Williford, Rick E.
  • Vetrano, John S.
  • Bruemmer, Stephen M.
  • Thomas, L.
  • Sliger, William A.
  • Riley, Bradley M.
  • Martinez, James E.
  • Ho, Nicolas
  • Schultz, John F.
  • Allen, Paul J.
  • Keller, Paul E.
  • Bennett, Wendy D.
  • Martin, Peter M.
  • Manijeh Razeghi, Gail J. Brown
  • Schweiger, Michael J.
OrganizationsLocationPeople

article

Engineered SMR catalysts based on hydrothermally stable, porous, ceramic supports for microchannel reactors

  • Dagle, Robert A.
  • Wang, Yong
  • Tran, Diana N.
  • Holladay, Jamie D.
  • Li, Xiaohong S.
  • Canfield, Nathan L.
  • Johnson, Bradley R.
Abstract

A novel engineered, porous, ceramic, catalyst support for stable, high temperature (> 800 C) steam methane reforming operation was demonstrated with a rhodium catalyst. The support was designed for operation in micro-channel reactors. Typically high temperature alloys such as FeCrAlY or 600 series nickel-based alloys are used as structural supports that are wash-coated with catalyst-impregnated, high surface area, ceramic powders. The hydrothermal conditions used for methane steam reforming create several material challenges that interfere with the performance of metallic supports: corrosive degradation of the metal, delamination of the wash-coated catalyst from the metal support, and accelerated sintering of the high-surface area ceramic powder used to disperse the metal catalysts. Additionally, undesirable side reactions such as coke formation promoted by the support metal typically necessitate operating SMR reactions at higher than equilibrium steam to carbon ratios. The engineered, porous, ceramic support with Rh catalyst was tested at a steam to carbon ratio of 1:1, a contact time of 27 ms, and temperatures up to 900 C. Near equilibrium conversion and selectivity were achieved. It was found that there was no degradation or sintering observed in the engineered, porous, ceramic support, the catalyst did not delaminate from the support, nor was any coke formation detected after 100 hr time-on-stream (TOS) under these reaction conditions. Keywords: methane steam reforming, microchannel reactors, engineered catalyst, hydrothermally stable catalyst

Topics
  • porous
  • surface
  • Carbon
  • nickel
  • Rhodium
  • mass spectrometry
  • ceramic
  • sintering