People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rebrov, Evgeny V.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Process intensification for gram-scale synthesis of N-doped carbon quantum dots immersing a microplasma jet in a gas-liquid reactorcitations
- 2020Non-thermal plasma for process and energy intensification in dry reforming of methanecitations
- 2019Enhanced Droplet Size Control in Liquid-Liquid Emulsions Obtained in a Wire-Guided X-Mixercitations
- 2019Enhanced Droplet Size Control in Liquid-Liquid Emulsions Obtained in a Wire-Guided X-Mixercitations
- 2015Mechanochemical synthesis of TiO2/NiFe2O4 magnetic catalysts for operation under RF fieldcitations
- 2011Structural and magnetic properties of sol-gel Co2xNi0.5-x Zn0.5-xFe2)4 thin filmscitations
- 2010Structural investigations and magnetic properties of sol-gel Ni(0.5)Zn(0.5)Fe2O4 thin films for microwave heatingcitations
- 2010Use of microtechnologies for intensifying industrial processescitations
- 2009Selective hydrogenation of acetylene alcohols over a Pd/TiO2 coating in a capillary microreactor
- 2009Confined palladium colloids in mesoporous frameworks for carbon nanotube growthcitations
- 2009Determination of the Tolman length in the improved Derjaguin-Broekhoff-de Boer theory for capillary condensation of ethanol in mesoporous thin films by ellipsometric porosimetrycitations
- 2009Method for control of the thickness of mesoporous titania films for applications in catalytic microreactors
- 2009Thin catalytic coatings on microreactor walls: a way to make industrial processes more efficient
- 2008Oxidation of organic compounds in a microstructured catalytic reactorcitations
- 2008Microwave-assisted hydrothermal synthesis of zeolite Beta coatings on ALD-modified borosilicate glass for application in microstructured reactorscitations
- 2008Mesoporous silica films as catalyst support for microstructured reactors: preparation and characterizationcitations
- 2008Gold supported on mesoporous titania thin films for application in microstructured reactors in low-temperature water-gas shift reactioncitations
- 2007Method for the in situ preparation of a single layer of zeolite beta crystals on a molybdenum substrate for microreactor applicationscitations
- 2007Film properties and in-situ optical analysis of TiO2 layers synthesized by remote plasma ALD
- 2006Preparation and characterization of bimetallic catalysts supported on mesoporous silica filmscitations
- 2005Optimization of anodic oxidation and Cu-Cr oxide catalyst preparation on structured aluminum plates processed by electro discharge machiningcitations
- 2003Challenging prospects for microstructured reaction architectures. (1). Zeolite coating synthesis and high-throughput experimentation in a microreactor
Places of action
Organizations | Location | People |
---|
article
Optimization of anodic oxidation and Cu-Cr oxide catalyst preparation on structured aluminum plates processed by electro discharge machining
Abstract
This paper describes the optimization of three processes applied in fabrication of a microstructured reactor for complete oxidation of volatile organic compounds. The first process involves the optimization of the electro discharge machining (EDM) method to produce a set of microchannels with a high length to diameter ratio of 100, with a standard deviation from the average diameter below 0.2%, and with a surface roughness not higher than 2.0 µm. To satisfy these criteria, fabrication of microchannels must be carried out with two machining passes in the Al51st alloy. Then, the effect of several parameters on the anodization current efficiency with respect to oxide formation was studied. The best process conditions to get a 30 µm porous alumina layer in a 0.4 M oxalic acid electrolyte, were found to be a temperature of 1 °C, an anodic current density of 5 mA/cm2, and 23 h oxidation time. At last, the resulting coatings were impregnated with an aqueous solution of copper dichromate followed by drying and calcination at 450 °C to produce active catalysts. The effect of a copper dichromate concentration, number of impregnation cycles (1 or 2), and different after-treatments on catalytic activity and stability in complete oxidation of n-butane were studied. The catalytic activity of the obtained coatings is superior to that of alumina supported pelletized catalysts even at much lower loadings of active metals.