Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Diejomaoh, Onajite T. Abafe

  • Google
  • 1
  • 6
  • 7

University of Bristol

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Surface modification of cellulose nanomaterials with amine functionalized fluorinated ionic liquids for hydrophobicity and high thermal stability7citations

Places of action

Chart of shared publication
Lavoratti, Alessandra
1 / 3 shared
Kondo, Tetsuo
1 / 1 shared
Eichhorn, Stephen J.
1 / 45 shared
Khimyak, Yaroslav Z.
1 / 13 shared
Laverock, Jude
1 / 13 shared
Koev, Todor T.
1 / 4 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Lavoratti, Alessandra
  • Kondo, Tetsuo
  • Eichhorn, Stephen J.
  • Khimyak, Yaroslav Z.
  • Laverock, Jude
  • Koev, Todor T.
OrganizationsLocationPeople

article

Surface modification of cellulose nanomaterials with amine functionalized fluorinated ionic liquids for hydrophobicity and high thermal stability

  • Lavoratti, Alessandra
  • Kondo, Tetsuo
  • Eichhorn, Stephen J.
  • Khimyak, Yaroslav Z.
  • Laverock, Jude
  • Koev, Todor T.
  • Diejomaoh, Onajite T. Abafe
Abstract

A highly hydrophobic fluorinated ionic liquid (IL), 3-aminopropyl-tributylphosphonium bis(trifluoromethylsolfonyl)imide ([aP4443][NTf2]), was synthesized, and applied for the surface modification of cellulose nanomaterials (CNMs) by reductive amination. The modified CNMs were fully characterized for their chemical structure, morphology, thermal stability, and surface hydrophobicity. Results obtained from Nuclear Magnetic Resonance spectroscopy (1H, 13C, 19F and 31P), Fourier Transform Infrared spectroscopy, X-ray Photoelectron Spectroscopy, and X-ray diffraction confirmed the successful grafting of [aP4443][NTf2] onto the surface of CNMs up to a degree of surface functionalization of 2.5 %. Transmission Electron Microscopy analysis confirmed the dimensions of the CNMs were retained after modification but with significant aggregation for modified cellulose nanocrystals (CNCs). Thermal Gravimetric Analysis demonstrated significant increases in the degradation temperatures of modified CNCs from ∼252 °C to ∼310 °C. Modified cellulose nanofibers (CNFs) did not show any increase in thermal stability. The modified CNM suspensions showed reduced affinity for water and the formation of aggregates in aqueous media. Furthermore, a water contact angle test demonstrated enhanced hydrophobicity for modified CNMs. This modification approach holds potential for the use of the [aP4443][NTf2] IL for functional materials to achieve novel hydrophobic CNMs suitable for aqueous processing with thermoplastics and for fabrication of thermally stable composite materials.

Topics
  • morphology
  • surface
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • composite
  • transmission electron microscopy
  • cellulose
  • thermoplastic
  • Nuclear Magnetic Resonance spectroscopy
  • functionalization
  • amine
  • Fourier transform infrared spectroscopy
  • degradation temperature
  • gravimetric analysis