Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bakhshi, Adelheid

  • Google
  • 1
  • 5
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Fusion of cellulose microspheres with pulp fibers: Creating an unconventional type of paper1citations

Places of action

Chart of shared publication
Spirk, Stefan
1 / 21 shared
Bauer, Wolfgang
1 / 8 shared
Fischer, Johanna
1 / 7 shared
Fischer, Steffen
1 / 8 shared
Scheer, Alexa
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Spirk, Stefan
  • Bauer, Wolfgang
  • Fischer, Johanna
  • Fischer, Steffen
  • Scheer, Alexa
OrganizationsLocationPeople

article

Fusion of cellulose microspheres with pulp fibers: Creating an unconventional type of paper

  • Bakhshi, Adelheid
  • Spirk, Stefan
  • Bauer, Wolfgang
  • Fischer, Johanna
  • Fischer, Steffen
  • Scheer, Alexa
Abstract

Cellulose microspheres (CMS) are a type of spherical regenerated cellulose particles with versatile properties which have been used as carrier materials in medical and technical applications. The integration of CMS into paper products opens up novel application scenarios for paper products in a wide range of fields. However, the incorporation of CMS carriers into paper products is challenging and hitherto no reports do exist in literature. Here, we present a feasibility study to incorporate up to 50 w.% CMS in paper hand sheets using retention aids. Our primary observations highlight the successful formation of uniform paper hand sheets retaining its tensile strengths at elevated CMS concentrations. Sheets with high CMS contents exhibit an increase in density and display enhanced surface smoothness — an outcome of a CMS layer forming atop the fiber base — which effectively bridges voids and rectifies surface irregularities as supported by Gurley testing, infinite focus microscopy and scanning electron microscopy. While our primary objective centered on the general feasibility to manufacture CMS-containing papers, the resulting composite scaffold carries significant potential as a platform for innovative, functional paper-based materials.

Topics
  • density
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • strength
  • composite
  • forming
  • tensile strength
  • void
  • cellulose