Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Klockars, Konrad

  • Google
  • 1
  • 4
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Drying stresses in cellulose nanocrystal coatings: Impact of molecular and macromolecular additives13citations

Places of action

Chart of shared publication
Mihhels, Karl
1 / 5 shared
Greca, Luiz G.
1 / 11 shared
Majoinen, Johanna
1 / 7 shared
Tardy, Blaise L.
1 / 15 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Mihhels, Karl
  • Greca, Luiz G.
  • Majoinen, Johanna
  • Tardy, Blaise L.
OrganizationsLocationPeople

article

Drying stresses in cellulose nanocrystal coatings: Impact of molecular and macromolecular additives

  • Mihhels, Karl
  • Greca, Luiz G.
  • Majoinen, Johanna
  • Tardy, Blaise L.
  • Klockars, Konrad
Abstract

<p>The industrial implementation of cellulose nanocrystals (CNCs) in films and coatings requires thorough evaluation of the internal stresses post-consolidation, as they cause fracturing and peeling. Characterizing the impact of plasticizing additives on stress is therefore critical. Herein, we use the deflection of thin glass substrates to measure drying stresses in consolidating CNC films, and benchmark the impact of five additives (glucose, glycerol, poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA) and bovine serum albumin). Glycerol and PEG reduced drying stresses effectively, while PEG of increased molecular weight (from 0.2 to 10 kDa), PVA, and BSA were less effective. We analyzed the temporal aspects of the process, where stress relaxation of up to 30 % was observed 2 years after coating formation. Finally, we provide a framework to evaluate the impact of CNC morphology on residual stresses. The introduced approach is expected to fast-track the optimization and implementation of coatings based on biocolloids.</p>

Topics
  • impedance spectroscopy
  • glass
  • glass
  • laser emission spectroscopy
  • molecular weight
  • cellulose
  • alcohol
  • drying