Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schaubeder, Jana B.

  • Google
  • 1
  • 6
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Xylan-cellulose thin film platform for assessing xylanase activity14citations

Places of action

Chart of shared publication
Geijer, Cecilia
1 / 1 shared
Spirk, Stefan
1 / 21 shared
Ravn, Jonas L.
1 / 1 shared
Manfrao-Netto, Joao H. C.
1 / 1 shared
Orzan, Eliott J. Q.
1 / 1 shared
Nypelö, Tiina
1 / 15 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Geijer, Cecilia
  • Spirk, Stefan
  • Ravn, Jonas L.
  • Manfrao-Netto, Joao H. C.
  • Orzan, Eliott J. Q.
  • Nypelö, Tiina
OrganizationsLocationPeople

article

Xylan-cellulose thin film platform for assessing xylanase activity

  • Geijer, Cecilia
  • Spirk, Stefan
  • Ravn, Jonas L.
  • Schaubeder, Jana B.
  • Manfrao-Netto, Joao H. C.
  • Orzan, Eliott J. Q.
  • Nypelö, Tiina
Abstract

<p>Enzymatic degradation of plant polysaccharide networks is a complex process that involves disrupting an intimate assembly of cellulose and hemicelluloses in fibrous matrices. To mimic this assembly and to elucidate the efficiency of enzymatic degradation in a rapid way, models with physicochemical equivalence to natural systems are needed. Here, we employ xylan-coated cellulose thin films to monitor the hydrolyzing activity of an endo-1,4-beta-xylanase. In situ surface plasmon resonance spectroscopy (SPRS) revealed a decrease in xylan areal mass ranging from 0.01± 0.02 to 0.52 ± 0.04 mg.m<sup>-2</sup>. The extent of digestion correlates to increasing xylanase concentration. In addition, ex situ determination of released monosaccharides revealed that incubation time was also a significant factor in degradation (P &gt; 0.01). For both experiments, atomic force microscopy confirmed the removal of xylans from the cellulose thin films. We provide a new model platform that offers nanoscale sensitivity for investigating biopolymer interactions and their susceptibility to enzymatic hydrolysis.</p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • thin film
  • atomic force microscopy
  • cellulose
  • susceptibility
  • surface plasmon resonance spectroscopy