People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spirk, Stefan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Fusion of cellulose microspheres with pulp fibers: Creating an unconventional type of papercitations
- 2023Visualizing cellulose chains with cryo scanning transmission electron microscopy
- 2022Silica-based fibers with axially aligned mesopores from chitin self-assembly and sol-gel chemistrycitations
- 2022Xylan-cellulose thin film platform for assessing xylanase activitycitations
- 2021How cellulose nanofibrils and cellulose microparticles impact paper strength—A visualization approachcitations
- 2021Visualizing Degradation of Cellulose Nanofibers by Acid Hydrolysiscitations
- 2021Visualizing Degradation of Cellulose Nanofibers by Acid Hydrolysiscitations
- 2020Cellulose metal sulfide based nanocomposite thin films
- 2019Cellulose carbamate derived cellulose thin films: preparation, characterization and blending with cellulose xanthatecitations
- 2019Cobalt Ferrite Nanoparticles for Three-Dimensional Visualization of Micro- and Nanostructured Cellulose in Papercitations
- 2019Design of Friction, Morphology, Wetting, and Protein Affinity by Cellulose Blend Thin Film Compositioncitations
- 2019Multi-layered nanoscale cellulose/CuInS2 sandwich type thin filmscitations
- 2019Three Dimensional Localization and Visualization of Paper Fines in Sheets
- 2018Thin Films from Acetylated Lignin
- 2017Interaction of tissue engineering substrates with serum proteins and its influence on human primary endothelial cellscitations
- 2017How Bound and Free Fatty Acids in Cellulose Films Impact Nonspecific Protein Adsorptioncitations
- 2016Enzymes as Biodevelopers for Nano- And Micropatterned Bicomponent Biopolymer Thin Films.citations
- 2016Topography effects in AFM force mapping experiments on xylan-decorated cellulose thin films.citations
- 2014Photoregeneration of Trimethylsilyl Cellulose as a Tool for Microstructuring Ultrathin Cellulose Supportscitations
- 2013Functional patterning of biopolymer thin films using enzymes and lithographic methodscitations
- 2013Chitosan-Silane Sol-Gel Hybrid Thin Films with controllable Layer Thickness and Morphologycitations
Places of action
Organizations | Location | People |
---|
article
Xylan-cellulose thin film platform for assessing xylanase activity
Abstract
<p>Enzymatic degradation of plant polysaccharide networks is a complex process that involves disrupting an intimate assembly of cellulose and hemicelluloses in fibrous matrices. To mimic this assembly and to elucidate the efficiency of enzymatic degradation in a rapid way, models with physicochemical equivalence to natural systems are needed. Here, we employ xylan-coated cellulose thin films to monitor the hydrolyzing activity of an endo-1,4-beta-xylanase. In situ surface plasmon resonance spectroscopy (SPRS) revealed a decrease in xylan areal mass ranging from 0.01± 0.02 to 0.52 ± 0.04 mg.m<sup>-2</sup>. The extent of digestion correlates to increasing xylanase concentration. In addition, ex situ determination of released monosaccharides revealed that incubation time was also a significant factor in degradation (P > 0.01). For both experiments, atomic force microscopy confirmed the removal of xylans from the cellulose thin films. We provide a new model platform that offers nanoscale sensitivity for investigating biopolymer interactions and their susceptibility to enzymatic hydrolysis.</p>