People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tuukkanen, Sampo
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Self-assembled cellulose nanofiber-carbon nanotube nanocomposite films with anisotropic conductivitycitations
- 2022Self-assembled cellulose nanofiber-carbon nanotube nanocomposite films with anisotropic conductivitycitations
- 2021Properties of Barium Ferrite Nanoparticles and Bacterial Cellulose-Barium Ferrite Nanocomposites Synthesized by a Hydrothermal Method
- 2020Enhancing piezoelectric properties of bacterial cellulose films by incorporation of MnFe2O4 nanoparticlescitations
- 2019Motion energy harvesting and storage system including printed piezoelectric film and supercapacitorcitations
- 2019Electropolymerized polyazulene as active material in flexible supercapacitorscitations
- 2018Effect of surfactant type and sonication energy on the electrical conductivity properties of nanocellulose-CNT nanocomposite filmscitations
- 2018Nanofibrillated and bacterial celluloses as renewable piezoelectric sensor materials
- 2018Nanocellulose as a Piezoelectric Materialcitations
- 2018Nanocellulose as a Piezoelectric Materialcitations
- 2017Nanocellulose as a renewable piezoelectric sensor material
- 2017Electropolymerized polyazulene as active material in flexible supercapacitorscitations
- 2017Fabrication and characterization of nanocellulose aerogel structurescitations
- 2016Piezoelectric sensitivity of a layered film of chitosan and cellulose nanocrystalscitations
- 2016Structural and Electrical Characterization of Solution-Processed Electrodes for Piezoelectric Polymer Film Sensorscitations
- 2016Cellulose nanofibril film as a piezoelectric sensor materialcitations
- 2016Nanocellulose based piezoelectric sensors
- 2016Nanocellulose based piezoelectric sensors
- 2015Characteristics of Piezoelectric Polymer Film Sensors With Solution-Processable Graphene-Based Electrode Materialscitations
- 2014Stretching of solution processed carbon nanotube and graphene nanocomposite films on rubber substratescitations
- 2014Modelling of Joule heating based self-alignment method for metal grid line passivationcitations
- 2014Spray coating of self-aligning passivation layer for metal grid lines
Places of action
Organizations | Location | People |
---|
article
Enhancing piezoelectric properties of bacterial cellulose films by incorporation of MnFe2O4 nanoparticles
Abstract
Low-cost and highly sensitive piezoelectric sensors were fabricated from bacterial cellulose (BC)/MnFe2O4 nanocomposite films via a co-precipitation method, followed by hot-pressing. MnFe2O4 nanoparticles were homogeneously distributed in the BC structure. The piezoelectric sensitivity measurements in the normal mode showed that the pristine BC film exhibited a sensitivity of ∼5 pC/N, whereas this value was increased to 23 pC/N for the composite film, which is comparable to the PVDF reference film. In the bending mode, the piezoelectric response increased to 25 pC/N and 57 pC/N for the BC film and the composite film, respectively. Moreover, the piezoelectric sensitivity was significantly enhanced using carbon tape electrodes attached directly to the films instead of sandwiched electrodes. This produced a sensitivity of greater than 50 pC/N for the MBC nanocomposite film in the normal mode measurement. Our work demonstrates the potential of using MBC composite films as inexpensive and highly sensitive flexible piezoelectric sensors.