People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khakalo, Alexey
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Biodegradable Cellulose Nanocomposite Substrate for Recyclable Flexible Printed Electronicscitations
- 2022Nanocellulose Removes the Need for Chemical Crosslinking in Tannin-Based Rigid Foams and Enhances Their Strength and Fire Retardancycitations
- 2021Manufacture of all-wood sawdust-based particle board using ionic liquid-facilitated fusion processcitations
- 2021Rheological behavior of high consistency enzymatically fibrillated cellulose suspensionscitations
- 2020Wood based materials with ionic liquid fusion
- 2019Anti-oxidative and UV-absorbing biohybrid film of cellulose nanofibrils and tannin extractcitations
- 2018The effect of oxyalkylation and application of polymer dispersions on the thermoformability and extensibility of papercitations
- 2018Protein-mediated interfacial adhesion in composites of cellulose nanofibrils and polylactidecitations
- 2017Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles
- 2017Protein Adsorption Tailors the Surface Energies and Compatibility between Polylactide and Cellulose Nanofibrilscitations
- 2017Advanced Structures and Compositions for 3D Forming of Cellulosic Fiberscitations
- 2017Advanced Structures and Compositions for 3D Forming of Cellulosic Fibers:Dissertation
- 2016Effect of polyurethane addition on the strength, extensibility and 3D formability of paper and board
- 2016Combined mechanical and chemical modifications towards super-stretchable paper-based materials
Places of action
Organizations | Location | People |
---|
article
The effect of oxyalkylation and application of polymer dispersions on the thermoformability and extensibility of paper
Abstract
Wood fiber-based packaging materials, as renewable materials, have growing market potential due to their sustainability. A new breakthrough in cellulose-based packaging requires some improvement in the mechanical properties of paper. Bleached softwood kraft pulp was mechanically treated, in two stages, using high- and low-consistency refining, sequentially. Chemical treatment of pulp using the oxyalkylation method was applied to modify a portion of fiber material, especially the fiber surface, and its compatibility with polymer dispersions including one carbohydrate polymer. The results showed that the compatibility of the cellulosic fibers with some polymers could be improved with oxyalkylation. By adjusting mechanical and chemical treatments, and the thermoforming conditions, the formability of paper was improved, but simultaneously the strength and stiffness decreased. The results suggest that the formability of the paper is not a direct function of the extensibility of the applied polymer, but also depends on the fiber network structure and surface energy.