Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Remaud-Siméon, M.

  • Google
  • 1
  • 9
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017A dextran with unique rheological properties produced by the dextransucrase from Oenococcus kitaharae DSM 17330.38citations

Places of action

Chart of shared publication
Dols-Lafargue, Marguerite
1 / 5 shared
Monsan, P.
1 / 1 shared
Moulis, C.
1 / 1 shared
Vuillemin, M.
1 / 3 shared
Grimaud, Florent
1 / 5 shared
Lucas, Patrick
1 / 3 shared
Garnier, C.
1 / 4 shared
Rolland-Sabate, Agnes
1 / 1 shared
Claverie, M.
1 / 2 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Dols-Lafargue, Marguerite
  • Monsan, P.
  • Moulis, C.
  • Vuillemin, M.
  • Grimaud, Florent
  • Lucas, Patrick
  • Garnier, C.
  • Rolland-Sabate, Agnes
  • Claverie, M.
OrganizationsLocationPeople

article

A dextran with unique rheological properties produced by the dextransucrase from Oenococcus kitaharae DSM 17330.

  • Dols-Lafargue, Marguerite
  • Monsan, P.
  • Remaud-Siméon, M.
  • Moulis, C.
  • Vuillemin, M.
  • Grimaud, Florent
  • Lucas, Patrick
  • Garnier, C.
  • Rolland-Sabate, Agnes
  • Claverie, M.
Abstract

A gene encoding a novel dextransucrase was identified in the genome of Oenococcus kitaharae DSM17330 and cloned into E. coli. With a kcat of 691s-1 and a half-life time of 111h at 30°C, the resulting recombinant enzyme -named DSR-OK- stands as one of the most efficient and stable dextransucrase characterized to date. From sucrose, this enzyme catalyzes the synthesis of a quasi linear dextran with a molar mass higher than 1×109g·mol-1 that presents uncommon rheological properties such as a higher viscosity than that of the most industrially used dextran from L. mesenteroides NRRL-B-512F, a yield stress that was never described before for any type of dextran, as well as a gel-like structure. All these properties open the way to a vast array of new applications in health, food/feed, bulk or fine chemicals fields.

Topics
  • viscosity