Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pereira, Laura C. J.

  • Google
  • 3
  • 13
  • 188

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016Thermal and magnetic properties of chitosan-iron oxide nanoparticles89citations
  • 2014Effects of surfactants on the magnetic properties of iron oxide colloids93citations
  • 2009Magnetic microstructure of YFe11Ti aggregates6citations

Places of action

Chart of shared publication
Ferreira, Isabel
2 / 45 shared
Soares, Paula
2 / 4 shared
Laia, César
1 / 9 shared
Borges, João Paulo Miranda Ribeiro
2 / 32 shared
Novo, Carlos
2 / 2 shared
Coutinho, Joana T.
2 / 2 shared
Machado, Diana
1 / 2 shared
Alves, Ana M. R.
1 / 1 shared
Carvalho, Patrícia Almeida
1 / 7 shared
Gonçalves, António Pereira
1 / 3 shared
Colaço, Rogério
1 / 3 shared
Nunes, Daniela
1 / 39 shared
Hosson, Jeff Th M. De
1 / 2 shared
Chart of publication period
2016
2014
2009

Co-Authors (by relevance)

  • Ferreira, Isabel
  • Soares, Paula
  • Laia, César
  • Borges, João Paulo Miranda Ribeiro
  • Novo, Carlos
  • Coutinho, Joana T.
  • Machado, Diana
  • Alves, Ana M. R.
  • Carvalho, Patrícia Almeida
  • Gonçalves, António Pereira
  • Colaço, Rogério
  • Nunes, Daniela
  • Hosson, Jeff Th M. De
OrganizationsLocationPeople

article

Thermal and magnetic properties of chitosan-iron oxide nanoparticles

  • Ferreira, Isabel
  • Soares, Paula
  • Laia, César
  • Pereira, Laura C. J.
  • Borges, João Paulo Miranda Ribeiro
  • Novo, Carlos
  • Coutinho, Joana T.
  • Machado, Diana
Abstract

<p>Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub> NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe<sub>3</sub>O<sub>4</sub> NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe<sub>3</sub>O<sub>4</sub> NPs, and also the incorporation of Fe<sub>3</sub>O<sub>4</sub> NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe<sub>3</sub>O<sub>4</sub> NPs was not significantly affected by chitosan.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • composite
  • chemical composition
  • precipitation
  • iron
  • molecular weight
  • thermal decomposition
  • crystallinity
  • biocompatibility