Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nawrotek, Katarzyna

  • Google
  • 1
  • 4
  • 68

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Chitosan- based hydrogel implants enriched with calcium ions intended for peripheral nervous tissue regeneration68citations

Places of action

Chart of shared publication
Rudnicka, Karolina
1 / 7 shared
Kamiński, Kamil
1 / 8 shared
Tylman, Michał
1 / 1 shared
Balcerzak, Jacek
1 / 2 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Rudnicka, Karolina
  • Kamiński, Kamil
  • Tylman, Michał
  • Balcerzak, Jacek
OrganizationsLocationPeople

article

Chitosan- based hydrogel implants enriched with calcium ions intended for peripheral nervous tissue regeneration

  • Nawrotek, Katarzyna
  • Rudnicka, Karolina
  • Kamiński, Kamil
  • Tylman, Michał
  • Balcerzak, Jacek
Abstract

A new method for fabrication of chitosan-based hydrogel implants intended for peripheral nervous tissue regeneration was developed. The method is based on an electrodeposition phenomenon from a solution of chitosan and organic acid. In order to increase the mechanical strength of the implant, the solution was enriched with hydroxyapatite. Hydroxyapatite served as a source of calcium ions too. The influence of the concentration of the polymer and the additive on chemical, mechanical as well as biological properties of the obtained implant was evaluated. The study showed great dependence of the initial solution composition mainly on the physicochemical properties of the resulting structure. Basic in vitro cytotoxic and pro-inflammatory assays showed biocompatibility of manufactured implants, therefore, animal experimentations may be considered.

Topics
  • impedance spectroscopy
  • polymer
  • strength
  • Calcium
  • electrodeposition
  • biocompatibility