Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Li, Ming

  • Google
  • 17
  • 87
  • 667

Science Foundation Ireland

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2024Demonstration and benchmarking of a novel powder sheet additive manufacturing approach with austenitic steelcitations
  • 2024From scrap metal to highly efficient electrodes: harnessing the nanotextured surface of swarf for effective utilisation of Pt and Co for hydrogen production1citations
  • 2022The Role of Stacking Faults in the Enhancement of the a-b Plane Peak in Silver Ion-Irradiated Commercial MOD REBCO Wires8citations
  • 2021Focusing of Particles in a Microchannel with Laser Engraved Groove Arrays7citations
  • 2021Hydrodynamic particle focusing enhanced by femtosecond laser deep grooving at low Reynolds numbers10citations
  • 2019Microstructure modeling of high-temperature microcrack initiation and evolution in a welded 9Cr martensitic steel3citations
  • 2019Cyclic plasticity of welded P91 material for simple and complex power plant connections42citations
  • 2019Iodine adsorption in a redox-active metal-organic framework102citations
  • 2019Influence of material inhomogeneity on the mechanical response of a tempered martensite steel4citations
  • 2019Iodine adsorption in a redox-active metal-organic framework:Electrical conductivity induced by host-guest charge-transfer102citations
  • 2016Mapping three-dimensional oil distribution with π-EPI MRI measurements at low magnetic field16citations
  • 2015Biodegradation of starch films71citations
  • 2015Characteristics of starch-based films with different amylose contents plasticised by 1-ethyl-3-methylimidazolium acetate54citations
  • 2015Structure–property relationships in (1 − x)BaTiO3–xBiGdO3 ceramics35citations
  • 2015Rock Core Analysis: Metallic Core Holders for Magnetic Resonance Imaging Under Reservoir Conditions2citations
  • 2015Biodegradation of starch films : the roles of molecular and crystalline structure71citations
  • 2015Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators139citations

Places of action

Chart of shared publication
Dugenio, Janmell
1 / 1 shared
Lupoi, Rocco
1 / 20 shared
Marola, Silvia
1 / 5 shared
Mcconnell, Sean
1 / 1 shared
Coban, Asli
1 / 1 shared
Abbott, William M.
1 / 1 shared
Mirihanage, Wajira
1 / 12 shared
Sasnauskas, Arnoldas
1 / 2 shared
Cai, Zhe
1 / 1 shared
Padamati Babu, Ramesh
1 / 1 shared
Zhang, Wenyou
1 / 3 shared
Casati, Riccardo
1 / 14 shared
Yin, Shuo
1 / 4 shared
Clare, Adam T.
1 / 18 shared
Geary, Paul
1 / 1 shared
Murray, James W.
1 / 7 shared
Alves Fernandes, Jesum
1 / 6 shared
Speidel, Alistair
1 / 8 shared
Kohlrausch, Emerson C.
1 / 4 shared
Khlobystov, Andrei N.
1 / 15 shared
Plummer, Richard
1 / 1 shared
Thangamuthu, Madasamy
1 / 2 shared
Knibbe, Ruth
1 / 7 shared
Strickland, Nicholas M.
1 / 1 shared
Notthoff, Christian
1 / 5 shared
Soman, Arya A.
1 / 1 shared
Wimbush, Stuart C.
1 / 4 shared
Rupich, Martin W.
1 / 1 shared
Yalikun, Yaxiaer
2 / 4 shared
Okano, Kazunori
2 / 2 shared
Tanaka, Yo
2 / 3 shared
Hosokawa, Yoichiroh
2 / 2 shared
Kiya, Ryota
1 / 1 shared
Anggraini, Dian
2 / 2 shared
Uno, Hanaka
1 / 1 shared
Tang, Tao
2 / 2 shared
Inglis, David
1 / 1 shared
Hao, Yansheng
1 / 1 shared
Teranishi, Norihiro
1 / 1 shared
Akita, Eri
1 / 1 shared
Namoto, Misuzu
1 / 1 shared
Odonoghue, Padraic E.
3 / 12 shared
Leen, Sean B.
3 / 56 shared
Barrett, Richard A.
2 / 18 shared
Harrison, Noel M.
1 / 19 shared
Scully, Stephen
1 / 1 shared
Sheveleva, Alena
2 / 7 shared
Schroder, Martin
2 / 23 shared
Spencer, Ben Felix
1 / 14 shared
Fazzi, Rodrigo
2 / 2 shared
Silva, Ivan Da
2 / 6 shared
Zhang, Xinran
2 / 4 shared
Tuna, Floriana
2 / 39 shared
Yang, Sihai
2 / 32 shared
Han, Xue
2 / 20 shared
Sapchenko, Sergei
2 / 2 shared
Mcinnes, Eric J. L.
1 / 14 shared
Odowd, Noel P.
1 / 5 shared
Sun, F. W.
1 / 1 shared
Li, D. F.
1 / 1 shared
Meade, E.
1 / 1 shared
Mcinnes, Eric
1 / 6 shared
Spencer, Ben
1 / 10 shared
Romero-Zerón, Laura
1 / 1 shared
Balcom, Bruce
2 / 2 shared
Macmillan, Bryce
1 / 1 shared
Marica, Florin
1 / 1 shared
Gilbert, Robert G.
2 / 4 shared
Halley, Peter J.
3 / 7 shared
Xie, David Fengwei
2 / 4 shared
Warren, Frederick J.
2 / 4 shared
Witt, Torsten
2 / 2 shared
Shamshina, Julia L.
1 / 1 shared
Gidley, Michael J.
1 / 3 shared
Mcnally, Tony
1 / 52 shared
Truss, Rowan W.
1 / 1 shared
Flanagan, Bernadine M.
1 / 2 shared
Rogers, Robin D.
1 / 6 shared
Reichmann, Klaus
2 / 10 shared
Schileo, Giorgio
1 / 5 shared
Feteira, Antonio
2 / 21 shared
Sinclair, Derek
1 / 5 shared
Ouellette, Matthew
1 / 1 shared
Liao, Guangzhi
1 / 1 shared
Romero-Zeron, Laura
1 / 1 shared
Hussein, Esam
1 / 1 shared
Xie, Fengwei
1 / 3 shared
Chart of publication period
2024
2022
2021
2019
2016
2015

Co-Authors (by relevance)

  • Dugenio, Janmell
  • Lupoi, Rocco
  • Marola, Silvia
  • Mcconnell, Sean
  • Coban, Asli
  • Abbott, William M.
  • Mirihanage, Wajira
  • Sasnauskas, Arnoldas
  • Cai, Zhe
  • Padamati Babu, Ramesh
  • Zhang, Wenyou
  • Casati, Riccardo
  • Yin, Shuo
  • Clare, Adam T.
  • Geary, Paul
  • Murray, James W.
  • Alves Fernandes, Jesum
  • Speidel, Alistair
  • Kohlrausch, Emerson C.
  • Khlobystov, Andrei N.
  • Plummer, Richard
  • Thangamuthu, Madasamy
  • Knibbe, Ruth
  • Strickland, Nicholas M.
  • Notthoff, Christian
  • Soman, Arya A.
  • Wimbush, Stuart C.
  • Rupich, Martin W.
  • Yalikun, Yaxiaer
  • Okano, Kazunori
  • Tanaka, Yo
  • Hosokawa, Yoichiroh
  • Kiya, Ryota
  • Anggraini, Dian
  • Uno, Hanaka
  • Tang, Tao
  • Inglis, David
  • Hao, Yansheng
  • Teranishi, Norihiro
  • Akita, Eri
  • Namoto, Misuzu
  • Odonoghue, Padraic E.
  • Leen, Sean B.
  • Barrett, Richard A.
  • Harrison, Noel M.
  • Scully, Stephen
  • Sheveleva, Alena
  • Schroder, Martin
  • Spencer, Ben Felix
  • Fazzi, Rodrigo
  • Silva, Ivan Da
  • Zhang, Xinran
  • Tuna, Floriana
  • Yang, Sihai
  • Han, Xue
  • Sapchenko, Sergei
  • Mcinnes, Eric J. L.
  • Odowd, Noel P.
  • Sun, F. W.
  • Li, D. F.
  • Meade, E.
  • Mcinnes, Eric
  • Spencer, Ben
  • Romero-Zerón, Laura
  • Balcom, Bruce
  • Macmillan, Bryce
  • Marica, Florin
  • Gilbert, Robert G.
  • Halley, Peter J.
  • Xie, David Fengwei
  • Warren, Frederick J.
  • Witt, Torsten
  • Shamshina, Julia L.
  • Gidley, Michael J.
  • Mcnally, Tony
  • Truss, Rowan W.
  • Flanagan, Bernadine M.
  • Rogers, Robin D.
  • Reichmann, Klaus
  • Schileo, Giorgio
  • Feteira, Antonio
  • Sinclair, Derek
  • Ouellette, Matthew
  • Liao, Guangzhi
  • Romero-Zeron, Laura
  • Hussein, Esam
  • Xie, Fengwei
OrganizationsLocationPeople

article

Characteristics of starch-based films with different amylose contents plasticised by 1-ethyl-3-methylimidazolium acetate

  • Shamshina, Julia L.
  • Gidley, Michael J.
  • Mcnally, Tony
  • Truss, Rowan W.
  • Halley, Peter J.
  • Xie, David Fengwei
  • Flanagan, Bernadine M.
  • Rogers, Robin D.
  • Li, Ming
Abstract

<p>Starch-based films plasticised by an ionic liquid, 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]), were prepared by a simple compression moulding process, facilitated by the strong plasticisation effect of [Emim][OAc]. The effects of amylose content of starch (regular vs. high-amylose maize) and relative humidity (RH) during ageing of the samples on a range of structural and material characteristics were investigated. Surprisingly, plasticisation by [Emim][OAc] made the effect of amylose content insignificant, contrary to most previous studies when other plasticisers were used. In other words, [Emim][OAc] changed the underlying mechanism responsible for mechanical properties from the entanglement of starch macromolecules (mainly amylose), which has been reported as a main responsible factor previously. The crystallinity of the plasticised starch samples was low and thus was unlikely to have a major contribution to the material characteristics, although the amylose content impacted on the crystalline structure and the mobility of amorphous parts in the samples to some extent. Therefore, RH conditioning and thus the sample water content was the major factor influencing the mechanical properties, glass transition temperature, and electrical conductivity of the starch films. This suggests the potential application of ionic liquid-plasticised starch materials in areas where the control of properties by environmental RH is desired.</p>

Topics
  • impedance spectroscopy
  • amorphous
  • mobility
  • glass
  • glass
  • glass transition temperature
  • aging
  • electrical conductivity
  • crystallinity