Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ang, Shirley

  • Google
  • 1
  • 8
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009Analysis of the continuous phase of the modified waxy maize starch suspension13citations

Places of action

Chart of shared publication
Hill, Sandra E.
1 / 2 shared
Morris, Gordon
1 / 6 shared
Desse, Melinda
1 / 5 shared
Wolf, Bettina
1 / 5 shared
Harding, Stephen E.
1 / 4 shared
Abu-Hardan, Madian
1 / 1 shared
Budtova, Tatiana
1 / 42 shared
Mitchell, John R.
1 / 2 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Hill, Sandra E.
  • Morris, Gordon
  • Desse, Melinda
  • Wolf, Bettina
  • Harding, Stephen E.
  • Abu-Hardan, Madian
  • Budtova, Tatiana
  • Mitchell, John R.
OrganizationsLocationPeople

article

Analysis of the continuous phase of the modified waxy maize starch suspension

  • Hill, Sandra E.
  • Morris, Gordon
  • Desse, Melinda
  • Wolf, Bettina
  • Harding, Stephen E.
  • Abu-Hardan, Madian
  • Budtova, Tatiana
  • Ang, Shirley
  • Mitchell, John R.
Abstract

<p>The continuous phase of the suspension of swollen-in-water modified waxy maize starch was analysed. The composition, concentration and molecular weight of the substance released from modified starch granules were determined. Starch granules were swollen in excess water at 73 °C and held at this temperature for 1 min. Centrifugation was used to separate the granules from the supernatant; the latter was then submitted to physico-chemical analysis. Surface tension measurements showed that the supernatant was different from pure water indicating the presence of dissolved polymeric material(s). Differential Scanning Calorimetry and iodine staining results revealed the presence of amylopectin. Analytical Ultracentrifugation and Size Exclusion Chromatography coupled with a Multi-angle Laser Light Scattering were used to determine the sedimentation coefficient and weight-average molecular weight of the soluble amylopectin fraction as well as giving an indication of solution concentration. The molecular weight of dissolved amylopectin was around 1.5 × 10<sup>6</sup> g/mol and its concentration in the supernatant varied from 0.6 to 6.7 mg/mL for initial 10 mg/mL and 50 mg/mL starch suspensions, respectively. The sedimentation coefficient, weight-average molecular weight and amylopectin concentration in the supernatant all increased non-linearly with the initial starch concentration in the suspension.</p>

Topics
  • surface
  • phase
  • differential scanning calorimetry
  • molecular weight
  • centrifugation
  • exclusion chromatography
  • laser light scattering