Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jönsson, Monica

  • Google
  • 1
  • 6
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007Recrystallization of waxy maize starch during manufacturing of starch microspheres for drug delivery: Influence of excipients11citations

Places of action

Chart of shared publication
Simpraga, Anna
1 / 1 shared
Wahlgren, Marie
1 / 3 shared
Thelin, Bernt
1 / 1 shared
Larsson, Malin
1 / 1 shared
Elfstrand, Lidia
1 / 2 shared
Eliasson, Ann-Charlotte
1 / 2 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Simpraga, Anna
  • Wahlgren, Marie
  • Thelin, Bernt
  • Larsson, Malin
  • Elfstrand, Lidia
  • Eliasson, Ann-Charlotte
OrganizationsLocationPeople

article

Recrystallization of waxy maize starch during manufacturing of starch microspheres for drug delivery: Influence of excipients

  • Simpraga, Anna
  • Wahlgren, Marie
  • Thelin, Bernt
  • Jönsson, Monica
  • Larsson, Malin
  • Elfstrand, Lidia
  • Eliasson, Ann-Charlotte
Abstract

The formation of ordered structure, such as crystallites, in starch was studied by means of differential scanning calorimetry (DSC). The influence of time/temperature treatment and additives such as polyethylene glycol (PEG), bovine serum albumin (BSA) and a carbonate buffer on the formation was investigated. The experiments were planned with a CCC (Central Composite Circumscribed) design. For all three investigated systems it could be concluded that the incubation time at 6 °C was the decisive factor for the amount of ordered structure obtained during the incubation, while the incubation time at 37 °C was the decisive factor for the thermal stability of the crystallites as expressed by Ton, Tm and Tc. The additives seemed to mainly affect the nucleation phase of crystallization process. The additives decreased the time required in order to obtain a certain level of ordering in the incubated starch samples. The carbonate buffer decreased the amount of ordered structure in starch as judged by DSC enthalpy values, while increasing the melting temperature of these structures. The additives PEG and BSA lowered the melting temperatures of the starch in the systems but increased the enthalpy values. By optimization procedure a specific amount of ordered structure with desired thermal characteristics could be predicted.

Topics
  • phase
  • experiment
  • composite
  • differential scanning calorimetry
  • recrystallization
  • crystallization
  • melting temperature