Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gray, Rob

  • Google
  • 1
  • 8
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Carbon fibre lattice strain mapping via microfocus Synchrotron X-ray diffraction of a reinforced composite12citations

Places of action

Chart of shared publication
Chen, Yang
1 / 12 shared
Srisuriyachot, Jiraphant
1 / 4 shared
Barthelay, Thomas
1 / 1 shared
Dolbnya, Igor P.
1 / 9 shared
Butler, Richard
1 / 40 shared
Bénézech, Jean
1 / 4 shared
Mcnair, Sophie A. M.
1 / 3 shared
Lunt, Alexander J. G.
1 / 31 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Chen, Yang
  • Srisuriyachot, Jiraphant
  • Barthelay, Thomas
  • Dolbnya, Igor P.
  • Butler, Richard
  • Bénézech, Jean
  • Mcnair, Sophie A. M.
  • Lunt, Alexander J. G.
OrganizationsLocationPeople

article

Carbon fibre lattice strain mapping via microfocus Synchrotron X-ray diffraction of a reinforced composite

  • Chen, Yang
  • Srisuriyachot, Jiraphant
  • Gray, Rob
  • Barthelay, Thomas
  • Dolbnya, Igor P.
  • Butler, Richard
  • Bénézech, Jean
  • Mcnair, Sophie A. M.
  • Lunt, Alexander J. G.
Abstract

Synchrotron X-ray diffraction (SXRD) strain analysis is well established for high crystalline materials such as metals and ceramics, however, previously it has not been used in Carbon Fibre Reinforced Polymer (CFRP) composites due to their complex turbostratic atomic structure. This paper will present the feasibility of using SXRD for fibre orientation and lattice strain mapping inside CFRPs. In particular, it is the first time that the radial {002} and axial {100} strains of carbon fibre crystal planes have been analysed and cross-validated via numerical multi-scale simulation in a two-scale manner. In order to simplify the analysis and provide comparable estimates, an UniDirectional (UD) CFRP formed into a well-established humpback bridge shape was used. The lattice strain estimates obtained from SXRD showed localised stress concentrations and effectively matched the numerical results obtained by modelling. The mean absolute percentage differences between the two were 25.8% and 28.5% in the radial and axial directions, respectively. Differences between the two measurements are believed to originate from the non-uniform thermal history, forming geometry and tool-part interaction which leads to localised residual strains in the laminate which are unable to be fully captured by the numerical simulation performed. The carbon fibre microstructures of the inner plies adjacent to the tool were found to be significantly influenced by these factors and therefore the largest errors were observed at these locations. The approach presented has significant promise and implications for research into the micromechanics of composite materials and areas for future improvement have been outlined.

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • Carbon
  • x-ray diffraction
  • simulation
  • composite
  • forming
  • ceramic