People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Madsen, Jacob
University of Vienna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Creation of Single Vacancies in hBN with Electron Irradiationcitations
- 2022Indirect measurement of the carbon adatom migration barrier on graphenecitations
- 2020In Situ Study of the Motion of Supported Gold Nanoparticles
- 2017Accuracy of surface strain measurements from transmission electron microscopy images of nanoparticlescitations
Places of action
Organizations | Location | People |
---|
article
Indirect measurement of the carbon adatom migration barrier on graphene
Abstract
<p>Although surface diffusion is critical for many physical and chemical processes, including the epitaxial growth of crystals and heterogeneous catalysis, it is particularly challenging to directly study. Here, we estimate the carbon adatom migration barrier on freestanding monolayer graphene by quantifying its temperature-dependent electron knock-on damage. Due to the fast healing of vacancies by diffusing adatoms, the damage rate decreases with increasing temperature. By analyzing the observed damage rates at 300-1073 K using a model describing our finite scanning probe, we find a barrier of (0.33 & PLUSMN; 0.03) eV.</p>