People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Muñoz, Jose
Universitat Autònoma de Barcelona
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Heterolayered carbon allotrope architectonics via multi-material 3D printing for advanced electrochemical devicescitations
- 2021Green activation using reducing agents of carbon-based 3D printed electrodes: Turning good electrodes to greatcitations
- 2021Chiral 3D-Printed Bioelectrodescitations
- 20200D polymer nanocomposite carbon-paste electrodes using carbon nanohornscitations
- 2020Electronic Performance of Polymer Carbon‐Paste Nanoallotropes from 0D to 3D as Novel Gate Electrodes in Water‐Gated Organic Field‐Effect Transistorscitations
- 2018Chiral magnetic-nanobiofluids for rapid electrochemical screening of enantiomers at a magneto nanocomposite graphene-paste electrodecitations
- 2018Carbon nanotube-based nanocomposite sensor tuned with a catechol as novel electrochemical recognition platform of uranyl ion in aqueous samplescitations
- 2017Customized Bio-functionalization of Nanocomposite Carbon Paste Electrodes for Electrochemical Sensing: A Mini Reviewcitations
- 2017Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensingcitations
- 2016Characterization protocol to improve the electroanalytical response of graphene-polymer nanocomposite sensorscitations
- 2016Amperometric thyroxine sensor using a nanocomposite based on graphene modified with gold nanoparticles carrying a thiolated β-cyclodextrincitations
- 2016Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dotscitations
- 2016CdS quantum dots as a scattering nanomaterial of carbon nanotubes in polymeric nanocomposite sensors for microelectrode array behaviorcitations
- 2016Intermatrix synthesis of Ag, AgAu and Au nanoparticles by the galvanic replacement strategy for bactericidal and electrocatalytically active nanocompositescitations
- 2015Modified multiwalled carbon nanotube/epoxy amperometric nanocomposite sensors with CuO nanoparticles for electrocatalytic detection of free chlorinecitations
- 2015Effect of carbon nanotubes purification on electroanalytical response of near-percolation amperometric nanocomposite sensorscitations
Places of action
Organizations | Location | People |
---|
article
Green activation using reducing agents of carbon-based 3D printed electrodes: Turning good electrodes to great
Abstract
3D printing of carbon-based nanocomposites, which combine the electrical properties of carbon additives with the benefits of thermoplastics, has emerged as a promising route towards rapid and low-cost manufacturing of customised-shaped electronic devices with minimised waste. However, their poor electrical activity in their pristine state makes activation post-treatments mandatory to reduce the amount of insulating polymer. These post-treatments typically involve the use of toxic organic solvents or costly thermal annealing methods. Herein, a simple eco-friendly wet-chemical post-treatment is presented for the quick and general activation of carbon-based 3D printed electronic devices by employing reducing agents like ascorbic acid or sodium borohydride. We tested a range of reducing agents, such as sodium borohydride, lithium aluminium hydride, hydrazine and ascorbic acid, as well as a model oxidising agent like hydrogen peroxide. We found that ascorbic acid and sodium borohydride are the most effective chemicals to achieve electrically active devices while preserving the shape and structure of the 3D printed carbon objects. Thus, this work allows the development of advanced carbon-based 3D printed electrodes by employing an eco-friendly activation approach.