People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arnould, Olivier
University of Montpellier
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Thermal and energy analysis of DMTA testscitations
- 2023Non-destructive measurement of orthotropic elastic properties of wood samples by their modal impulse response
- 2021Influence of force volume indentation parameters and processing method in wood cell walls nanomechanical studiescitations
- 2021On the determination of the elastic constants of carbon fibres by nanoindentation testscitations
- 2020The Middle Lamella of Plant Fibers Used as Composite Reinforcement: Investigation by Atomic Force Microscopycitations
- 2020Vibrational measurement of shear modulus and damping of wood: An application of the Vybris-Torsion device
- 2019Effect of thermomechanical couplings on viscoelastic behaviour of polystyrene
- 2019Cell Wall Ultrastructure Modifications During Flax Fiber Retting
- 2018Caractérisation mécanique de la paroi cellulaire des fibres de lin par AFM : de la biomécanique aux effets des procédés de mise en forme des composites bio-sourcés
- 2018Viscous dissipation and thermo-mechanical coupling effect in the polymer
- 2018Effect of time and thermo-mechanical couplings on polymers
- 2017Flax fibres cell walls characterization by Peak-Force Quantitative Nano Mechanics technology
- 2016Characterisation of cubic oak specimens from the Vasa ship and recent wood by means of quasi-static loading and resonance ultrasound spectroscopy (RUS)citations
- 2015Characterisation of cubic oak specimens from the Vasa ship and recent wood by means of quasi-static loading and resonance ultrasound spectroscopy (RUS)citations
- 2012Experimental micromechanical characterization of wood cell walls
- 2012The effect of the G-layer on the viscoelastic properties of tropical hardwoodscitations
- 2010Enhanced multiple ultrasonic shear reflection method for the determination of high frequency viscoelastic propertiescitations
- 2009Mesoscale Analysis of dynamic loading and their physical consequences on a propellant: numerical and mechanical modelisations issues
- 2009The viscoelastic properties of some Guianese woods
- 2007Mechanical characterization of wood at the submicrometre scale: a prospective study
- 2006AFM characterization of the mechanical properties of wood at the cell wall level ; a prospective study
- 2004Thermomechanical properties and fatigue of nanocrystalline Ni/Cu electrodepositscitations
- 2004Prevalent material parameters governing spalling of a slag-impregnated refractory
- 2003Prevalent material parameters governing spalling of a slag-impregnated refractory
- 2002Long-Term Life of Ni/Cu Bellows: Effect of Diffusion on Thermomechanical Propertiescitations
Places of action
Organizations | Location | People |
---|
article
On the determination of the elastic constants of carbon fibres by nanoindentation tests
Abstract
Nano-indentation instrumented tests are carried out at shallow depths on PAN-based and MPP-based carbon fibres. Indentation moduli are obtained by performing the tests at ten different measured orientations with respect to the fibre axis. They are used to identify the elastic constants of the fibres, assuming a transversely isotropic behaviour, by minimising a cost function between measured and estimated values. Inconstancies between the identified in-plane shear and transverse moduli and reported literature values are pointed out, and some drawbacks of the nano-indentation method are highlighted. An improved method taking into account the buckling mechanisms of crystallites at stake during the indentation process, and visible in the hysteretic behaviour of force-penetration nanoindentation curves, is proposed. It allows to identify values of elastic constants that are in accordance with literature values. These elastic properties of carbon fibres are in turn used to estimate the elastic properties of epoxy matrix composites containing these fibres. Very good agreement is found with experimentally available values of unidirectional ply properties. An excellent correlation between experiments and Finite Element Analyses of the indentation response of carbon fibres is eventually found.