Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hankel, Marlies

  • Google
  • 1
  • 1
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Insights into the trapping mechanism of light metals on C2N-h2D33citations

Places of action

Chart of shared publication
Searles, Debra J.
1 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Searles, Debra J.
OrganizationsLocationPeople

article

Insights into the trapping mechanism of light metals on C2N-h2D

  • Searles, Debra J.
  • Hankel, Marlies
Abstract

<p>Our work presents insights from density functional theory calculations on the trapping mechanism of light metal atoms in C<sub>2</sub>N-h2D. The storage capacity of C<sub>2</sub>N-h2D for lithium, sodium and calcium ions has been explored for utilisation as a battery anode material. Our calculations show that a significant capacity of over 500 mAh g<sup>−1</sup> and excellent mobility of the calcium atoms can be achieved. Overall, we find that all three metals interact strongly with the pyridinic nitrogen in the pores and that the material shows a high initial storage capacity. However, due to the strong binding of the first intercalated metals in the pores, these show poor mobility. Once the pores are loaded with at least one metal atom, the mobility improves significantly. The trapped metal atoms however, affect the capacity of the material, making it much smaller. This limits the suitability of C<sub>2</sub>N-h2D as an anode material for lithium and sodium ion batteries and explains previous experimental findings on poor performance for lithium. For calcium we find that the trapping of some of the calcium atoms has less of an effect due to the dual valence, leading to the observed higher capacity.</p>

Topics
  • density
  • pore
  • mobility
  • theory
  • laser emission spectroscopy
  • Nitrogen
  • Sodium
  • density functional theory
  • Lithium
  • Calcium