Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marx, J.

  • Google
  • 2
  • 8
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Tailored crystalline width and wall thickness of an annealed 3D carbon foam composites and its mechanical property7citations
  • 2018Fundamentals of the temperature-dependent electrical conductivity of a 3D carbon foam—Aerographite20citations

Places of action

Chart of shared publication
Roth, S.
2 / 94 shared
Mishra, Prof. Yogendra Kumar
2 / 41 shared
Schulte, K.
2 / 29 shared
Adelung, R.
2 / 12 shared
Brouschkin, A.
2 / 2 shared
Fiedler, B.
2 / 16 shared
Smazna, D.
2 / 8 shared
Wittich, H.
1 / 2 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Roth, S.
  • Mishra, Prof. Yogendra Kumar
  • Schulte, K.
  • Adelung, R.
  • Brouschkin, A.
  • Fiedler, B.
  • Smazna, D.
  • Wittich, H.
OrganizationsLocationPeople

article

Tailored crystalline width and wall thickness of an annealed 3D carbon foam composites and its mechanical property

  • Roth, S.
  • Mishra, Prof. Yogendra Kumar
  • Schulte, K.
  • Adelung, R.
  • Marx, J.
  • Brouschkin, A.
  • Fiedler, B.
  • Smazna, D.
Abstract

<p>Carbon nanostructures in form of 3D carbon foams are mainly popular in materials community because of their ultralow densities, variable morphologies, and remarkable properties, etc. One of these foams is Aerographite, which exhibits a tetrapodal interconnected morphology. Similar to other synthetic carbon structures, the lattice defects are formed during the synthesis of Aerographite, which can be healed by a post-thermal treatment. Aerographite shows a property dependency on wall thickness (number of graphitic layers), which affects both, the electrical and mechanical properties. In this study, the wall thickness is tailored by varying of the total reaction time during the replication process. The influence of the thermal treatment of Aerographite on its mechanical performance in an Aerographite-epoxy nanocomposite, by determining the fracture toughness (K<sub>1C</sub>) in three-point bending tests (SEN-3PB), is investigated. An increase of the fracture toughness with increasing wall thickness is observed for untreated Aerographite. The graphitization of Aerographite leads to a reduction of the mechanical properties, by increasing the crystalline width. Consequently, the measured fracture toughness is dependent on the graphitization, the calculated crystalline width and the wall thickness of tubes in the hollow Aerographite tetrapodal network. Finally, based on these relations, a phenomenological mechanical failure model is developed and briefly discussed.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • morphology
  • Carbon
  • bending flexural test
  • defect
  • fracture toughness