People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
George, Antony
Friedrich Schiller University Jena
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Structural and electronic properties of MoS2 and MoSe2 monolayers grown by chemical vapor deposition on Au(111)†citations
- 2023Atomic-scale characterization of contact interfaces between thermally self-assembled Au islands and few-layer MoS2 surfaces on SiO2citations
- 2023High‐Performance Monolayer MoS 2 Field‐Effect Transistors on Cyclic Olefin Copolymer‐Passivated SiO 2 Gate Dielectriccitations
- 2023Regulating Li‐Ion Transport through Ultrathin Molecular Membrane to Enable High‐Performance All‐Solid‐State–Batterycitations
- 2023Regulating Li‐Ion Transport through Ultrathin Molecular Membrane to Enable High‐Performance All‐Solid‐State–Batterycitations
- 2022Exciton spectroscopy and diffusion in MoSe2-WSe2 lateral heterostructures encapsulated in hexagonal boron nitride
- 2022Exciton spectroscopy and diffusion in MoSe2-WSe2 lateral heterostructures encapsulated in hexagonal boron nitride
- 2022Patterned Growth of Transition Metal Dichalcogenide Monolayers and Multilayers for Electronic and Optoelectronic Device Applications.
- 2022Patterned Growth of Transition Metal Dichalcogenide Monolayers and Multilayers for Electronic and Optoelectronic Device Applicationscitations
- 2022Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenidescitations
- 2022Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenidescitations
- 20211D p–n Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by One‐Pot Chemical Vapor Deposition Synthesiscitations
- 2021Wafer scale synthesis of organic semiconductor nanosheets for van der Waals heterojunction devicescitations
- 2020Scalable functionalization of optical fibers using atomically thin semiconductors
- 2020Scalable functionalization of optical fibers using atomically thin semiconductorscitations
- 2019Accessing high optical quality of MoS2 monolayers grown by chemical vapor deposition
- 2018Lateral heterostructures of two-dimensional materials by electron-beam induced stitchingcitations
- 2014Patterning of Epitaxial Perovskites from Micro and Nano Molded Stencil Maskscitations
- 2010Microstructure and field emission characteristics of ZnO nanoneedles grown by physical vapor depositioncitations
Places of action
Organizations | Location | People |
---|
document
Lateral heterostructures of two-dimensional materials by electron-beam induced stitching
Abstract
We present a novel methodology to synthesize two-dimensional (2D) lateral heterostructures of graphene and MoS2 sheets with molecular carbon nanomembranes (CNMs), which is based on electron beam induced stitching. Monolayers of graphene and MoS2 were grown by chemical vapor deposition (CVD) on copper and SiO2 substrates, respectively, transferred onto gold/mica substrates and patterned by electron beam lithography or photolithography. Self-assembled monolayers (SAMs) of aromatic thiols were grown on the gold film in the areas where the 2D materials were not present. An irradiation with a low energy electron beam was employed to convert the SAMs into CNMs and simultaneously stitching the CNM edges to the edges of graphene and MoS2, therewith forming a heterogeneous but continuous film composed of two different materials. The formed lateral heterostructures possess a high mechanical stability, enabling their transfer from the gold substrate onto target substrates and even the preparation as freestanding sheets. We characterized the individual steps of this synthesis and the structure of the final heterostructures by complementary analytical techniques including optical microscopy, Raman spectroscopy, atomic force microscopy (AFM), helium ion microscopy (HIM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM) and find that they possess nearly atomically sharp boundaries.