People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Araujo, Mariana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
N-doped few-layered graphene-polyNi complex nanocomposite with excellent electrochromic properties
Abstract
The file associated with this record is under embargo until 12 months after publication, in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above. ; A new nanocomposite was obtained through the incorporation of N-doped few-layered graphene (N-FLG) into films of the electroactive polymer poly[Ni(3-Mesalen)] (poly[1]). The nanocomposite, N-FLG@poly[1], prepared by in situ electropolymerization, showed similar electrochemical responses to pristine poly[1], but with more well-defined redox peaks and higher current intensities, in compliance with larger electroactive surface coverage. N-FLG incorporation did not affect the electronic structure of poly[1], but decreased in 12% the molar extinction coefficient of the charge transfer band between metal and oxidized ligand, which is a promising advantage since this band is related to polymer degradation. The N-FLG@poly[1] showed multi-electrochromic behaviour (yellow in reduced state and green/russet in oxidized states) and revealed excellent improvement in electrochromic performance compared to original poly[1], specifically an increase of 71% in electrochemical stability (loss of 2.7% in charge after 10 000 switching cycles). Furthermore, nanocomposite formation decreased the switching time for oxidation (reduction) τ = 9 s (11 s) and improved the optical contrast (ΔT = 35.9%; increase of 38%) and colouration efficiency (η = 108.9 cm2 C−1; increase of 12%), for a representative film of coverage Γ = 296 nmol cm−2. The excellent electrochromic performance improvements are attributed to the alternative conducting pathways and to morphological modifications induced by N-FLG. ; Peer-reviewed ; Post-print