Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hannula, Pyry-Mikko

  • Google
  • 9
  • 26
  • 271

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Graphite recovery from waste Li-ion battery black mass for direct re-use10citations
  • 2022Electrochemical Growth of Ag/Zn Alloys from Zinc Process Solutions and Their Dealloying Behavior8citations
  • 2021Copper recovery from industrial wastewater - Synergistic electrodeposition onto nanocarbon materials30citations
  • 2020A sustainable two-layer lignin-anodized composite coating for the corrosion protection of high-strength low-alloy steel20citations
  • 2020Transformation of industrial wastewater into copper–nickel nanowire composites : straightforward recycling of heavy metals to obtain products of high added value2citations
  • 2019Processing and properties of carbon nanotube-copper composites ; Hiilinanoputki-kuparikomposiittien valmistus ja ominaisuudet88citations
  • 2018Corrosion behaviour of cast and deformed copper-carbon nanotube composite wires in chloride media18citations
  • 2018Carbon Nanotube Fiber Pretreatments for Electrodeposition of Copper7citations
  • 2016Carbon nanotube-copper composites by electrodeposition on carbon nanotube fibers88citations

Places of action

Chart of shared publication
Chernyaev, Alexander
1 / 2 shared
Kallio, Tanja
1 / 38 shared
Hupa, Leena
1 / 90 shared
Lundström, Mari
7 / 41 shared
Liivand, Kerli
1 / 1 shared
Kobets, Anna
1 / 1 shared
Tesfaye, Fiseha
1 / 26 shared
Rautama, Eeva-Leena
1 / 3 shared
Wilson, Bp
3 / 20 shared
Yliniemi, Kirsi
1 / 15 shared
Wang, Zulin
1 / 3 shared
Stando, Grzegorz
1 / 2 shared
Kumanek, Bogumiła
1 / 1 shared
Janas, Dawid
5 / 13 shared
Dastpak, Arman
1 / 3 shared
Wasiak, Tomasz
1 / 2 shared
Lassila, Sanni
1 / 2 shared
Forsen, Olof
2 / 3 shared
Lundstrom, Mari
1 / 1 shared
Aromaa, Jari
2 / 8 shared
Masquelier, Nicolas
1 / 3 shared
Junnila, Minttu
1 / 1 shared
Koziol, Krzysztof
1 / 5 shared
Forsén, Olof
1 / 5 shared
Peltonen, Antti
1 / 4 shared
Aromaa, Jari J.
1 / 7 shared
Chart of publication period
2024
2022
2021
2020
2019
2018
2016

Co-Authors (by relevance)

  • Chernyaev, Alexander
  • Kallio, Tanja
  • Hupa, Leena
  • Lundström, Mari
  • Liivand, Kerli
  • Kobets, Anna
  • Tesfaye, Fiseha
  • Rautama, Eeva-Leena
  • Wilson, Bp
  • Yliniemi, Kirsi
  • Wang, Zulin
  • Stando, Grzegorz
  • Kumanek, Bogumiła
  • Janas, Dawid
  • Dastpak, Arman
  • Wasiak, Tomasz
  • Lassila, Sanni
  • Forsen, Olof
  • Lundstrom, Mari
  • Aromaa, Jari
  • Masquelier, Nicolas
  • Junnila, Minttu
  • Koziol, Krzysztof
  • Forsén, Olof
  • Peltonen, Antti
  • Aromaa, Jari J.
OrganizationsLocationPeople

article

Carbon nanotube-copper composites by electrodeposition on carbon nanotube fibers

  • Koziol, Krzysztof
  • Forsén, Olof
  • Lundström, Mari
  • Peltonen, Antti
  • Aromaa, Jari J.
  • Wilson, Bp
  • Hannula, Pyry-Mikko
  • Janas, Dawid
Abstract

<p>Electrochemical deposition of copper on a carbon nanotube (CNT) fiber from a copper sulfate - sulfuric acid bath was studied in order to produce a carbon nanotube-copper composite wire. The high resistivity of the aerogel-spun fiber causes a non-uniform current distribution during deposition, which results in a drastic drop in the copper nuclei population density as sufficient overpotential is not available beyond a certain distance from the current feed point. Copper was found to fill the pores between CNT bundles from Focused Ion Beam (FIB) cut cross-sections confirming that aqueous based electrolytes can fill micropores between as-spun CNTs in a fiber network. The speed at which copper grows on the fiber surface was identified at ca. 0.08 mm/s with 1 mA applied current. The copper cladding showed columnar growth with a grain size an order of magnitude higher than the CNT-Cu region. The resulting composite was found to have specific conductivity similar to that of pure copper i.e. 98% of copper with 0.2 w-% of CNT, exhibiting a ninefold increase from the pure CNT fiber. Self-annealing was shown to decrease the resistance of the composite.</p>

Topics
  • density
  • impedance spectroscopy
  • pore
  • surface
  • Carbon
  • grain
  • resistivity
  • grain size
  • nanotube
  • composite
  • focused ion beam
  • copper
  • annealing
  • electrodeposition
  • wire