People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Budd, Peter M.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Mixed matrix and thin-film nanocomposite membranes of PIM-1 and hydrolyzed PIM-1 with Ni- and Co-MOF-74 nanoparticles for CO2 separation: Comparison of blending, grafting and crosslinking fabrication methodscitations
- 2024Stiffening and softening of freshly prepared and aged CTA, PTMSP, and PIM‐1 films exposed to volatile compounds
- 2024High gas permeability in aged superglassy membranes with nanosized UiO-66−NH2/cPIM-1 network fillerscitations
- 2023CO2 separation using thin film composite membranes of acid-hydrolyzed PIM-1citations
- 2022Porous silica nanosheets in PIM-1 membranes for CO2 separationcitations
- 2022Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporationcitations
- 2021Electrospun Adsorptive Nanofibrous Membranes from Ion Exchange Polymers to Snare Textile Dyes from Wastewatercitations
- 2021Electrospun Adsorptive Nanofibrous Membranes from Ion Exchange Polymers to Snare Textile Dyes from Wastewatercitations
- 2021PIM-1/Holey Graphene Oxide Mixed Matrix Membranes for Gas Separation: Unveiling the Role of Holescitations
- 2020Superglassy Polymers to Treat Natural Gas by Hybrid Membrane/Amine Processes: Can Fillers Help?citations
- 2020Graphene–PSS/L-DOPA nanocomposite cation exchange membranes for electrodialysis desalinationcitations
- 2019Electrostatically-coupled graphene oxide nanocomposite cation exchange membranecitations
- 2018Impeded physical aging in PIM-1 membranes containing graphene-like fillerscitations
- 2018Graphene oxide – polybenzimidazolium nanocomposite anion exchange membranes for electrodialysiscitations
- 2018Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO 2 separationcitations
- 2018Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separationcitations
- 2018Graphene/Polyamide Laminates for Supercritical CO 2 and H 2 S Barrier Applications: An Approach toward Permeation Shutdowncitations
- 2018Graphene/Polyamide Laminates for Supercritical CO2 and H2S Barrier Applications: An Approach toward Permeation Shutdowncitations
- 2017Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillerscitations
- 2016Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporositycitations
- 2005Polymerization and carbonization of high internal phase emulsionscitations
- 2004Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materialscitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporosity
Abstract
Polymers of intrinsic microporosity (PIMs) are a group of polymers with molecular sieve behaviour due to their rigid, contorted macromolecular backbones. They show great potential in organophilic pervaporation, solvent-resistant nanofiltration and gas and vapour separations. However, they are susceptible to physical ageing, leading to a reduction in permeability over time. An improvement in membrane permeability, control over diffusion selectivity and a reduction of the effect of physical ageing is expected by adding graphene as a nanofiller. Little is experimentally known about how the material disperses in the polymer. Here we used Raman spectroscopy, scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) to study the composite membrane's structure. Our results show that both STEM and Raman spectroscopy are able to identify the presence of graphene-based material in the composite. We show that STEM, through medium angle annular dark field (MAADF) or EELS imaging, can be exploited to obtain information on the morphology and the thickness of the flakes. Our results indicate that there is strong re-agglomeration of initially exfoliated graphene in solution when forming the composite. This is expected to produce strong changes in the mechanical properties and the physical ageing of the membrane.