People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Prestat, Eric
Culham Centre for Fusion Energy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2020Splenic Capture and In Vivo Intracellular Biodegradation of Biological-grade Graphene Oxide Sheetscitations
- 2019Enhanced Intraliposomal Metallic Nanoparticle Payload Capacity Using Microfluidic-Assisted Self-Assemblycitations
- 2018Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: effect of lateral flake size and chemical functionalizationcitations
- 2018Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: effect of lateral flake size and chemical functionalizationcitations
- 2017A Simple Electrochemical Route to Metallic Phase Trilayer MoS2: evaluation as Electrocatalysts and Supercapacitorscitations
- 2017A Simple Electrochemical Route to Metallic Phase Trilayer MoS2: evaluation as Electrocatalysts and Supercapacitorscitations
- 2017Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillerscitations
- 2017Role of 2D and 3D defects on the reduction of LaNiO 3 nanoparticles for catalysiscitations
- 2017In Situ Industrial Bimetallic Catalyst Characterisation using Scanning Transmission Electron Microscopy and X-Ray Absorption Spectroscopy at One Atmosphere and Elevated Temperaturecitations
- 2017In Situ Industrial Bimetallic Catalyst Characterisation using Scanning Transmission Electron Microscopy and X-Ray Absorption Spectroscopy at One Atmosphere and Elevated Temperaturecitations
- 2017Observing imperfection in atomic interfaces for van der Waals heterostructurescitations
- 2017EXPLORING NANOSCALE PRECURSOR REACTIONS IN ALLOY 600 IN H2/N2-H2O VAPOR USING IN SITU ANALYTICAL TRANSMISSION ELECTRON MICROSCOPYcitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2017EXPLORING NANOSCALE PRECURSOR REACTIONS IN ALLOY 600 IN H 2 /N 2 -H 2 O VAPOR USING IN SITU ANALYTICAL TRANSMISSION ELECTRON MICROSCOPYcitations
- 2017Role of 2D and 3D defects on the reduction of LaNiO3 nanoparticles for catalysiscitations
- 2016The Application of In Situ Analytical Transmission Electron Microscopy to the Study of Preferential Intergranular Oxidation in Alloy 600citations
- 2016The Application of In Situ Analytical Transmission Electron Microscopy to the Study of Preferential Intergranular Oxidation in Alloy 600citations
- 2016Imaging the hydrated microbe-metal interface using nanoscale spectrum imagingcitations
- 2016Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporositycitations
- 2014Real-time imaging and elemental mapping of AgAu nanoparticle transformationscitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporosity
Abstract
Polymers of intrinsic microporosity (PIMs) are a group of polymers with molecular sieve behaviour due to their rigid, contorted macromolecular backbones. They show great potential in organophilic pervaporation, solvent-resistant nanofiltration and gas and vapour separations. However, they are susceptible to physical ageing, leading to a reduction in permeability over time. An improvement in membrane permeability, control over diffusion selectivity and a reduction of the effect of physical ageing is expected by adding graphene as a nanofiller. Little is experimentally known about how the material disperses in the polymer. Here we used Raman spectroscopy, scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) to study the composite membrane's structure. Our results show that both STEM and Raman spectroscopy are able to identify the presence of graphene-based material in the composite. We show that STEM, through medium angle annular dark field (MAADF) or EELS imaging, can be exploited to obtain information on the morphology and the thickness of the flakes. Our results indicate that there is strong re-agglomeration of initially exfoliated graphene in solution when forming the composite. This is expected to produce strong changes in the mechanical properties and the physical ageing of the membrane.