People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lemoine, Patrick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Biocompatible Nanocomposite Coatings Deposited via Layer-by-Layer Assembly for the Mechanical Reinforcement of Highly Porous Interconnected Tissue-Engineered Scaffoldscitations
- 2022Nanoindentation and nano-scratching of hydroxyapatite coatings for resorbable magnesium alloy bone implant applicationscitations
- 2022Shear testing and failure modelling of calcium phosphate coated AZ31 magnesium alloys for orthopaedic applicationscitations
- 2021Effects of strontium-substitution in sputter deposited calcium phosphate coatings on the rate of corrosion of magnesium alloyscitations
- 2015Geopolymer Cement Concrete - An Emerging Technology for the Delivery of Resilient Highway Infrastructure Solutions
- 2011Structural and surface energy analysis of nitrogenated ta-C filmscitations
- 2007Intrinsic mechanical properties of ultra-thin amorphous carbon layerscitations
- 2006Measuring the thickness of ultra-thin diamond-like carbon filmscitations
- 2001Intrinsic stress measured on ultra-thin amorphous carbon films deposited on AFM cantileverscitations
- 2000The effects of Si incorporation on the microstructure and nanomechanical properties of DLC thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Measuring the thickness of ultra-thin diamond-like carbon films
Abstract
This paper examines the challenge posed by the measurement of thickness of sub-50 nm diamond-like carbon (DLC) films deposited onto silicon substrates. We compared contact profilometry (CP), optical profilometry (OP), contact atomic force microscopy (CAFM), tapping atomic force microscopy (TAFM) and X-ray reflectometry (XRR). Generally, CP, CAFM, TAFM and XRR give similar thickness values except for the case of themore compliant samples measured by CP and CAFM. Moreover, the theoretically precise XRR technique gives significant standard deviation due to the layering of the DLC film. For those transparent samples, OP always gives an erroneous measurement. These metrological artefacts are compared to calculations of mechanical deformation (CP and CAFM), energy dissipation (TAFM) and thin film interferences (OP). The OP artefact is used to extract the film's refractive index, in good agreement with literature values. Finally, the comparative data obtained in this study also shows that the density and refractive indexof the 10 nm thick films are constituently lower than those of the 50 nm thick films. This scaling effect, which is consistent with known growth mechanisms for DLC, further complicates the measurement of thickness by optical techniques. (c) 2006 Elsevier Ltd. All rights reserved.