Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Belusky, Michal

  • Google
  • 3
  • 10
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Diamagnetic coupling for magnetic tuning in nano-thin films2citations
  • 2019Sub-lattice polarization states in anti-ferroelectrics and their relaxation process9citations
  • 2019Evidence of substrate roughness surface induced magnetic anisotropy in Ni80Fe20 flexible thin films22citations

Places of action

Chart of shared publication
Vopson, Melvin Marian
3 / 10 shared
Lepadatu, Serban
2 / 6 shared
Namvar, Esmaeil
1 / 1 shared
Plazaola, Fernando
1 / 8 shared
Tan, Xiaoli
1 / 8 shared
Tang, Chiu
1 / 7 shared
Kuncser, Victor
1 / 3 shared
Thompson, Stephen
1 / 9 shared
Unzueta, Iraultza
1 / 5 shared
Naylor, John
1 / 1 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Vopson, Melvin Marian
  • Lepadatu, Serban
  • Namvar, Esmaeil
  • Plazaola, Fernando
  • Tan, Xiaoli
  • Tang, Chiu
  • Kuncser, Victor
  • Thompson, Stephen
  • Unzueta, Iraultza
  • Naylor, John
OrganizationsLocationPeople

article

Sub-lattice polarization states in anti-ferroelectrics and their relaxation process

  • Vopson, Melvin Marian
  • Namvar, Esmaeil
  • Plazaola, Fernando
  • Belusky, Michal
  • Tan, Xiaoli
  • Tang, Chiu
  • Kuncser, Victor
  • Thompson, Stephen
  • Unzueta, Iraultza
Abstract

We report studies of quasi-remanent polarization states in Pb0.99Nb0.02 [(Zr0.57Sn0.43) 0.94Ti0.06] 0.98O3 (PNZST) anti-ferroelectric ceramics and investigation of their relaxation effects using unique insitu electrically activated time-resolved Synchrotron X-ray powder diffraction (SXPD) and 119Sn Mössbauer Spectroscopy (MS). The SXPD patterns are consistent with a phase transition from quasi-tetragonal perovskite in 0V relaxed anti-ferroelectric state to rhombohedral distortion in ferroelectric state under saturating applied voltages of 2kV. The observed quasi-remanent polarization relaxation processes are due to the fact that tetragonal to rhombohedral distortion does not occur at the applied voltage required to access the quasi-remanent polarization states, and the tetragonal symmetry restored after the removal of the applied electric field is preserved. Since these quasi-remanent polarization states were seen as possibly suitable for memory applications, the implications of this study are that anti-ferroelectrics are more feasible for multi-state dynamic random access memories (DRAM), while their application to non-volatile memories requires development of more sophisticated "read-out" protocols, possibly involving dc electrical biasing.

Topics
  • perovskite
  • impedance spectroscopy
  • phase
  • mass spectrometry
  • phase transition
  • random
  • Mössbauer spectroscopy