People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Uggowitzer, Peter J.
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (62/62 displayed)
- 2024Unraveling the potential of Cu addition and cluster hardening in Al-Mg-Si alloyscitations
- 2024Influence of Solidification Rate and Impurity Content on 5/7-Crossover Alloys
- 2024Metallographic Etching of Al–Mg–Zn–(Cu) Crossover Alloyscitations
- 2024Comparative analysis of experimental techniques for microstructural characterization of novel nanostructured aluminium alloyscitations
- 2023Processing and microstructure–property relations of Al-Mg-Si-Fe crossover alloyscitations
- 2023Severe plastic deformation close to the melting point enables Mg-Fe nanocomposites with exceptional strengthcitations
- 2023In situ transmission electron microscopy as a toolbox for the emerging science of nanometallurgycitations
- 2023Assessment of different processing strategies to fabricate bulk Mg-Fe nanocompositescitations
- 2023Precipitation behaviour in AlMgZnCuAg crossover alloy with coarse and ultrafine grainscitations
- 2023Fine-grained aluminium crossover alloy for high-temperature sheet formingcitations
- 2023Strain-induced clustering in Al alloyscitations
- 2022High Fe content in Al-Mg-Si wrought alloys facilitates excellent mechanical propertiescitations
- 2022Stabilization of Al 3 Zr allotropes in dilute aluminum alloys via the addition of ternary elementscitations
- 2022Forging of an age-hardenable Mg–Al–Ca–Mn–Zn alloy on industrial scale
- 2022Precipitation in lean Mg–Zn–Ca alloyscitations
- 2022Mitigating the detrimental effects of galvanic corrosion by nanoscale composite architecture designcitations
- 2022MEMS-Based in situ electron-microscopy investigation of rapid solidification and heat treatment on eutectic Al-Cucitations
- 2022Alloy design strategy for microstructural-tailored scandium-modified aluminium alloys for additive manufacturingcitations
- 2022Closed die forging of a Mg-Al-Ca-Mn-Zn lean alloycitations
- 2021Synergistic alloy design concept for new high-strength Al–Mg–Si thick plate alloyscitations
- 2021Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part II: Evolution of Grain Size and Texturecitations
- 2021Formation of Die Soldering and the Influence of Alloying Elements on the Intermetallic Interfacecitations
- 2021Giant hardening response in AlMgZn(Cu) alloyscitations
- 2021Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part I: Evolution of Primary and Secondary Phasescitations
- 2020Prototypic Lightweight Alloy Design for Stellar-Radiation Environmentscitations
- 2020Room temperature recovery of cryogenically deformed aluminium alloyscitations
- 2020Evolution of microstructure and texture in laboratory- and industrial-scaled production of automotive Al-sheetscitations
- 2020Microstructural Change during the Interrupted Quenching of the AlZnMg(Cu) Alloy AA7050citations
- 2020Mg-alloys for forging applications-A reviewcitations
- 2020Mechanism of low temperature deformation in aluminium alloyscitations
- 2020Age-hardening response of AlMgZn alloys with Cu and Ag additionscitations
- 2019Size-dependent diffusion controls natural aging in aluminium alloyscitations
- 2019Age-hardening of high pressure die casting AlMg alloys with Zn and combined Zn and Cu additionscitations
- 2019Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatmentcitations
- 2019Influence of Zn and Sn on the precipitation behavior of new Al-Mg-Si alloyscitations
- 2019Processing-controlled suppression of Lüders elongation in AlMgMn alloyscitations
- 2018Monotropic polymorphism in a glass-forming metallic alloycitations
- 2016Long-term in vivo degradation behavior and near-implant distribution of resorbed elements for magnesium alloys WZ21 and ZX50citations
- 2016Differential Scanning Calorimetry and Thermodynamic Predictions—A Comparative Study of Al-Zn-Mg-Cu Alloyscitations
- 2016Ultrafast artificial aging of Al-Mg-Si alloys
- 2015Thermodynamics of Pd-Mn phases and extension to the Fe-Mn-Pd systemcitations
- 2015Influence of temperature on natural aging kinetics of AA6061 modified with Sn
- 2015Influence of Alloy Production History on Natural Aging of AA6061 Modified with Sn
- 2015Processing and microstructure-property relations of high-strength low-alloy (HSLA) Mg-Zn-Ca alloyscitations
- 2013Influence of Microalloying Elements on the Negative Effect of Natural Pre-Aging on Artificial Aging in Al-Mg-Si Alloys
- 2011Experimental investigation and thermodynamic assessment of the Cu-Sn-Ti ternary systemcitations
- 2010The influence of heat treatment and plastic deformation on the bio-degradation of a Mg-Y-RE alloycitations
- 2010The influence of yttrium (Y) on the corrosion of Mg-Y binary alloyscitations
- 2009In situ microtomographically monitored and electrochemically controlled corrosion initiation and propagation in AlMgSi alloy AA6016citations
- 2009The influence of heat treatment and plastic deformation on the bio-degradation of a Mg-Y-RE alloycitations
- 2009Calculated phase diagrams and the corrosion of die-cast Mg-Al alloyscitations
- 2008In situ monitoring of corrosion processes within the bulk of AlMgSi alloys using X-ray microtomographycitations
- 2008Investigation of the exfoliation-like attack mechanism in relation to Al-Mg-Si alloy microstructurecitations
- 2008Calculated phase diagrams, iron tolerance limit, and corrosion of Mg-Al alloyscitations
- 2008Electrochemically controlled corrosion initiation and propagation in AlMgSi alloys in-situ monitored using X-ray microtomographycitations
- 2008Martensitic-austenitic 9-12% Cr steels-Alloy design, microstructural stability and mechanical propertiescitations
- 2008Corrosion behaviour of an Mg-Y-RE alloy used in biomedical applications studied by electrochemical techniquescitations
- 2008The influence of MgSi particle reactivity and dissolution processes on corrosion in Al-Mg-Si alloyscitations
- 2007Experimental investigation of the Cu-Ti-Zr system at 800 °Ccitations
- 2006Influence of composition and roughness on localized corrosion of Al-Mg-Si alloys characterized by microelectrochemistrycitations
- 2005Thermodynamic assessment of the Sn-Ti systemcitations
- 2005Local creep in SnAg3.8Cu0.7 lead-free soldercitations
Places of action
Organizations | Location | People |
---|
article
Thermodynamics of Pd-Mn phases and extension to the Fe-Mn-Pd system
Abstract
<p>A thermodynamic description of the Pd-Mn system and the extension to the Fe-Pd-Mn system is developed within the framework of the CALPHAD approach. Thermodynamic data of the Pd-Mn system are critically reviewed and parameters of thermodynamic phase descriptions are optimized by selective combination of experimental data from the literature as well as published and new first-principles results. Phase diagram data are obtained from published microscopic and x-ray analysis. A previous calorimetric study and density functional theory results deliver enthalpies of formation of intermetallic Pd-Mn phases, and assessed Mn-activities are compared with experimental data derived from electromotive force and isopiestic experiments. A large difference between calorimetric high-temperature CALPHAD-assessed and first-principles enthalpies at 0 K of the PdMn-B2 phase is revealed and discussed. For the extension to the Fe-Mn-Pd system, thermodynamic descriptions of Pd-Fe intermetallics are revised using recent experimental and theoretic thermodynamic standard data and measured temperatures of magnetic transformations from the literature. A comprehensive thermodynamic standard data set of the intermetallic phases PdMn-B2, PdMn-L1<sub>0</sub>, Pd<sub>5</sub>Mn<sub>3</sub>, Pd<sub>2</sub>Mn, Pd<sub>3</sub>Mn-D0<sub>23</sub>, Pd<sub>3</sub>Mn-L1<sub>2</sub>, Pd<sub>3</sub>Fe-L1<sub>2</sub>, and PdFe-L1<sub>0</sub> is proposed. A set of experimental data of Fe-solubility in PdMn-L1<sub>0</sub>, the phase compositions of the L1<sub>0</sub>-phase in equilibrium with austenite, and the observed austenite+liquid equilibrium is used for extensions of model descriptions to ternary Fe-Mn-Pd. Heat-treated Fe-rich Fe-Mn-Pd alloys containing 5-20 wt% Mn and 1-10 wt% Pd reveal considerable stabilization of the tetragonal PdMn-L1<sub>0</sub> by dissolved Fe leading to an increase of the solvus temperature by more than 650 K relative to pure PdMn-L1<sub>0</sub>. Assessed isothermal sections of the ternary Fe-Mn-Pd system are presented.</p>