People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jandl, Isabella
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2017The Sn-rich corner of the system Ni-Pd-Sn: A phase diagram studycitations
- 2015Phase equilibria and structural investigations of the general NiAs-type in the ternary system Ni-Pt-Sncitations
- 2015Thermodynamic modelling of the general NiAs-type structure: A study of first principle energies of formation for binary Ni-containing B8 compoundscitations
- 2015Experimental investigation of the ternary system Ni-Pd-Sn with special focus on the B8-type phasecitations
- 2014Phase equilibria and structural investigations of the general NiAs-type in the ternary system Ni-Sn-Tecitations
Places of action
Organizations | Location | People |
---|
article
Thermodynamic modelling of the general NiAs-type structure: A study of first principle energies of formation for binary Ni-containing B8 compounds
Abstract
<p>Abstract Energies of formation of binary Ni-containing compounds with NiAs (B8)-type structure were calculated using ab-initio density functional theory. Structural relaxations and calculation of the total energies of the binary structures NiX<sub>2</sub> as CdI<sub>2</sub>-type structure, NiX as NiAs-type structure and Ni<sub>2</sub>X as Ni<sub>2</sub>In-type structure (with X= Al, Ga, In, Si, Ge, Sn, As, Sb, Bi, Se, Te) were done using the projector augmented wave (PAW) method with a generalised gradient approximation (GGA). Overall, the calculated values are in good agreement with comparable experimental literature data. General trends of the lattice parameters and the energies of formation are discussed in detail. Nearly all of the calculated compounds are thermodynamically stable compared to the elements at zero Kelvin, although not all of them are present in the equilibrium phase diagrams. According to a recent investigation of the system Ni-Sn-Te, continuous solid solutions from CdI<sub>2</sub>-type, over NiAs-type, up to Ni<sub>2</sub>In-type regions are possible. Hence, a modified sublattice model according to the compound energy formalism within Calphad is proposed to give this possibility consideration. The use of the calculated energies of formation at 0 K as endmember energies within this model is discussed.</p>