People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Danielsen, Hilmar Kjartansson
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Microstructural Evolution During Welding of High Si Solution-Strengthened Ferritic Ductile Cast Iron Using Different Filler Metalscitations
- 2023New White Etch Cracking resistant martensitic stainless steel for bearing applications by high temperature solution nitridingcitations
- 2023Understanding the challenges during repair welding of EN GJS-500-14 spheroidal cast iron for wind industry
- 2023Thermomechanical modeling and experimental study of a multi-layer cast iron repair welding for weld-induced crack predictioncitations
- 2022Effect of manufacturing defects on fatigue life of high strength steel bolts for wind turbinescitations
- 2021Residual strain-stress in manganese steel railway-crossing determined by synchrotron and laboratory X-raycitations
- 2021Microstructural characterization of white etching cracks in bearings after long-term operation in wind turbinescitations
- 2020Multi-axial Fatigue of Head-Hardened Pearlitic and Austenitic Manganese Railway Steels: A Comparative Studycitations
- 20192D and 3D characterization of rolling contact fatigue cracks in manganese steel wing rails from a crossingcitations
- 2019Crack formation within a Hadfield manganese steel crossing nosecitations
- 20182D and 3D characterization of rolling contact fatigue cracks in a manganese steel crossing wing rail
- 2017Synchrotron X-ray measurement of residual strain within the nose of a worn manganese steel railway crossingcitations
- 2017Multiscale characterization of White Etching Cracks (WEC) in a 100Cr6 bearing from a thrust bearing test rigcitations
- 2017Analysis of bearing steel exposed to rolling contact fatiguecitations
- 20163D characterization of rolling contact fatigue crack networkscitations
- 2016Review of Z phase precipitation in 9–12 wt-%Cr steelscitations
- 2014Grinding induced martensite on the surface of rails
- 2014A TEM Study on the Ti-Alloyed Grey Iron
- 2014Atomic Resolution Microscopy of Nitrides in Steel
- 2014New amorphous interface for precipitate nitrides in steelcitations
- 2013Investigation on Long-term Creep Rupture Properties and Microstructure Stability of Fe-Ni based Alloy Ni-23Cr-7W at 700°Ccitations
- 2013Kinetics of Z-Phase Precipitation in 9 to 12 pct Cr Steelscitations
- 2012Atomic resolution investigations of phase transformation from TaN to CrTaN in a steel matrix
- 2010Microstructural investigation of the oxide formed on TP 347H FG during long-term steam oxidationcitations
- 2010On the role of Nb in Z-phase formation in a 12% Cr steelcitations
- 2010On the role of Nb in Z-phase formation in a 12% Cr steelcitations
- 2010Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steelcitations
- 2009On the nucleation and dissolution process of Z-phase Cr(V,Nb)N in martensitic 12%Cr steelscitations
- 2008A study on Z-phase nucleation in martensitic chromium steelscitations
- 2008Thermodynamic and kinetic modelling: creep resistant materialscitations
- 2007A thermodynamic model of the Z-phase Cr(V, Nb)Ncitations
- 2006Behaviour of Z phase in 9–12%Cr steels
Places of action
Organizations | Location | People |
---|
article
A thermodynamic model of the Z-phase Cr(V, Nb)N
Abstract
Precipitation of large Z-phase particles, Cr(V, Nb)N, replacing fine MX carbonitrides, Nb(C, N) or V(N, C), has recently been identified as a major cause for premature breakdown in long-term creep strength of a number of new 9%–12% Cr martensitic steels, especially the high Cr variants. A thermodynamic model of the Z-phase has been developed based on the regular solution model. The model predicts Z-phase to be stable and to fully replace the MX particles in most of the new 9%–12% Cr steels, which is in good agreement with experimental observations. The rate of precipitation of Z-phase is a crucial factor for the long-term creep stability of these steels. Driving force calculations with the model allow estimates of the influence of the individual alloying elements on the rate of Z-phase precipitation, and can thus contribute useful information for alloy design to delay and retard Z-phase precipitation. According to these calculations, particularly Cr has a strong accelerating effect on Z-phase precipitation.