People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baroutaji, Ahmad
Aston University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 20243D printed CoCrMo personalised load-bearing meta-scaffold for critical size tibial reconstructioncitations
- 2024Acoustic metamaterials for sound absorption and insulation in buildingscitations
- 2023Melt Pool Monitoring and X-ray Computed Tomography-Informed Characterisation of Laser Powder Bed Additively Manufactured Silver–Diamond Compositescitations
- 20233D printing customised stiffness-matched meta-biomaterial with near-zero auxeticity for load-bearing tissue repaircitations
- 2022Advances in Electrolytes for Sodium-Sulfur Batteriescitations
- 2022Smart Tribological Coatingcitations
- 2022Crushing and energy absorption properties of additively manufactured concave thin-walled tubescitations
- 2022Future Directions for Shape Memory Alloy Developmentcitations
- 2022Electrical Conductivity of Additively Manufactured Copper and Silver for Electrical Winding Applicationscitations
- 2022Electrical Conductivity of Additively Manufactured Copper and Silver for Electrical Winding Applications
- 2021Deformation and energy absorption of additively manufactured functionally graded thickness thin-walled circular tubes under lateral crushingcitations
- 2021Mechanical and thermal performance of additively manufactured copper, silver and copper–silver alloyscitations
- 2021Acoustic behaviour of 3D printed titanium perforated panelscitations
- 2021A review on failure modes of wind turbine componentscitations
- 2021Additive manufacturing of anti-SARS-CoV-2 Copper-Tungsten-Silver alloycitations
- 2021Additive manufacturing of anti-SARS-CoV-2 copper-tungsten-silver alloycitations
- 20213D printed auxetic nasopharyngeal swabs for COVID-19 sample collectioncitations
- 2021Mechanical and thermal performance of additively manufactured copper, silver, and copper-silver alloyscitations
- 2021Smart tribological coatingcitations
- 20213d printed cobalt-chromium-molybdenum porous superalloy with superior antiviral activitycitations
- 2020Microstructure, Isothermal and Thermomechanical Fatigue Behaviour of Leaded and Lead-free Solder Jointscitations
- 2020Mechanical performance of additively manufactured pure silver antibacterial bone scaffoldscitations
- 2020Mechanical performance of additively manufactured pure silver antibacterial bone scaffoldscitations
- 2020Microstructure, isothermal and thermomechanical fatigue behaviour of leaded and lead-free solder jointscitations
- 2020Microstructure, isothermal and thermomechanical fatigue behaviour of leaded and lead-free solder jointscitations
Places of action
Organizations | Location | People |
---|
article
Acoustic metamaterials for sound absorption and insulation in buildings
Abstract
© 2024 The Authors. Published by Elsevier. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1016/j.buildenv.2024.111250 ; Despite the emergence of acoustic metamaterials with superior sound absorption and transmission loss, their adoption for building sound insulation has been limited. Sound insulation design in buildings is still informed by the acoustic performance of conventional materials, where the mass law contradicts light weighting when it comes to acoustic design. In any case buildings close to noisy environments such as motorways, railway lines and airports still suffer from significant low frequency noise pollution. Although the limited working bandwidth of acoustic metamaterials is a major issue limiting its application, combining meta-units that interact at various frequencies alongside multi-layer conventional solutions can deliver superior sound insulation in buildings. The review put forwards acoustic metamaterials, specifically emphasising superior sound absorption and transmission/insertion loss as critical properties for effective building sound insulation. The paper reveals a variety of acoustic metamaterials that can be adopted to compliment conventional sound insulation approaches for acoustically efficient building design. The performance of these metamaterials is then explained through their characteristic negative mass density, bulk modulus or repeating or locally resonating microstructure. The review is also extended to air transparent acoustic metamaterials that can be used for sound insulation of building ventilation. Lastly the prospects and challenges regarding the adoption of acoustic metamaterials in building insulation are also discussed. Overall, tuneable, and multifunctional acoustic metamaterials when thoughtfully integrated to building sound insulation can lead to significant acoustic comfort, space-saving and light-weighting. ; Published version