Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chen, Hanjie

  • Google
  • 1
  • 3
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021An effective PSR-based arrhythmia classifier using self-similarity analysis8citations

Places of action

Chart of shared publication
Morgan, John
1 / 1 shared
Maharatna, Koushik
1 / 1 shared
Das, Saptarshi
1 / 4 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Morgan, John
  • Maharatna, Koushik
  • Das, Saptarshi
OrganizationsLocationPeople

article

An effective PSR-based arrhythmia classifier using self-similarity analysis

  • Morgan, John
  • Maharatna, Koushik
  • Das, Saptarshi
  • Chen, Hanjie
Abstract

Among different cardiac arrhythmias, Ventricular Arrhythmias (VA) are fatal and life-threatening. Therefore, the detection and classification of VA is crucial task for cardiologists. However, in some cases, the ECG morphologies of two kinds of VA - Ventricular Tachycardia (VT) and Ventricular Fibrillation (VF) are similar and difficult to distinguish by human eyes. In this study, we present a low computational complexity arrhythmia classifier with high accuracy based on Phase Space Reconstruction (PSR). It is used to classify normal electrocardiogram (ECG), atrial fibrillation (AF), VT, VF and VT followed by VF. The Creighton University Ventricular Tachyarrhythmia Database (CUDB), Physikalisch-Technische Bundesanstalt Diagnostic Database (PTBDB), MIT-BIH Atrial Fibril-lation Database (MIT-BIH AFDB) fromPhysioNet databank andUniversity Hospital Southampton database (UHSDB) are used for evaluation and comparison of the proposed algorithm. Two PSR diagrams were plotted based on a window length of 5 s ECG with two different time delays and the PSR-based features were extracted from them using the box-counting technique. This process was applied on 122 records with more than 5500 windows of ECG signals. The results show an average sensitivity of 98.73%, specificity of 99.71% and accuracy of 99.56%. The average computational time of our proposed method for one 5 s window processing is 1.9 s and therefore has the potential in real-time arrhythmia classification applications.

Topics
  • impedance spectroscopy
  • phase