People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Havenith, Remco W. A.
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Lattice Dynamics and Thermoelectric Properties of 2D LiAlTe 2 , LiGaTe 2 , and LiInTe 2 Monolayerscitations
- 2024Lattice Dynamics and Thermoelectric Properties of 2D LiAlTe2, LiGaTe2, and LiInTe2 Monolayerscitations
- 2023Spark Discharge Doping—Achieving Unprecedented Control over Aggregate Fraction and Backbone Ordering in Poly(3‐hexylthiophene) Solutionscitations
- 2022Strategies for Enhancing the Dielectric Constant of Organic Materialscitations
- 2022Strategies for Enhancing the Dielectric Constant of Organic Materialscitations
- 2021Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectricscitations
- 2021Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectricscitations
- 2020N-type organic thermoelectrics:demonstration of ZT > 0.3citations
- 2020How Ethylene Glycol Chains Enhance the Dielectric Constant of Organic Semiconductors:Molecular Origin and Frequency Dependencecitations
- 2020How Ethylene Glycol Chains Enhance the Dielectric Constant of Organic Semiconductorscitations
- 2020N-type organic thermoelectricscitations
- 2019Coverage-Controlled Polymorphism of H-Bonded Networks on Au(111)citations
- 2015Strategy for Enhancing the Dielectric Constant of Organic Semiconductors Without Sacrificing Charge Carrier Mobility and Solubilitycitations
- 2015Strategy for Enhancing the Dielectric Constant of Organic Semiconductors Without Sacrificing Charge Carrier Mobility and Solubility
- 2014Strategy for Enhancing the Electric Permittivity of Organic Semiconductors
- 2014Stabilizing cations in the backbones of conjugated polymerscitations
- 2014Stabilizing cations in the backbones of conjugated polymerscitations
- 2013Molecular flexibility and structural instabilities in crystalline L-methioninecitations
- 2007On the structure of cross-conjugated 2,3-diphenylbutadienecitations
- 2002Ring current and electron delocalisation in an all-metal cluster, Al42-citations
- 2000Infinite, undulating chains of intermolecularly hydrogen bonded (E,E)-2,2-dimethylcyclohexane-1,3-dione dioximes in the solid state. A single crystal X-ray, charge density distribution and spectroscopic studycitations
- 2000Infinite, undulating chains of intermolecularly hydrogen bonded (E,E)-2,2-dimethylcyclohexane-1,3-dione dioximes in the solid state. A single crystal X-ray, charge density distribution and spectroscopic studycitations
Places of action
Organizations | Location | People |
---|
article
Molecular flexibility and structural instabilities in crystalline L-methionine
Abstract
<p>We have investigated the dynamics in polycrystalline samples of L-methionine related to the structural transition at about 307 K by incoherent inelastic and quasielastic neutron scattering, X-ray powder diffraction as well as ab-initio calculations. L-Methionine is a sulfur amino acid which can be considered a derivative of alanine with the alanine R-group CH3 exchanged by -CH3S- (CH2)(2). Using X-ray powder diffraction we have observed at similar to 190 K an anomalous drop of the c-lattice parameter and an abrupt change of the beta-monoclinic angle that could be correlated to the anomalies observed in previous specific heat measurements. Distinct changes in the quasielastic region of the neutron spectra are interpreted as being due to the onset and slowing-down of reorientational motions of the CH3-S group, are clearly distinguished above 130 K in crystalline L-methionine. Large-amplitude motions observed at low frequencies are also activated above 275 K, while other well-defined vibrations are damped. The ensemble of our results suggests that the crystalline structure of L-methionine is dynamically highly disordered above 275 K, and such disorder can be linked to the flexibility of the molecular thiol-ether group. (C) 2013 Elsevier B.V. All rights reserved.</p>