Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ajam, Yazan

  • Google
  • 1
  • 4
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Design and in vivo testing of novel single-stage tendon graft using polyurethane nanocomposite polymer for tendon reconstruction3citations

Places of action

Chart of shared publication
Blunn, Gw
1 / 21 shared
Kalaskar, Deepak M.
1 / 1 shared
Midha, Swati
1 / 2 shared
Tan, Arthur C. W.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Blunn, Gw
  • Kalaskar, Deepak M.
  • Midha, Swati
  • Tan, Arthur C. W.
OrganizationsLocationPeople

article

Design and in vivo testing of novel single-stage tendon graft using polyurethane nanocomposite polymer for tendon reconstruction

  • Blunn, Gw
  • Kalaskar, Deepak M.
  • Midha, Swati
  • Tan, Arthur C. W.
  • Ajam, Yazan
Abstract

Severe trauma, failure of prior surgical repair, delayed presentation and excessive scarring around the flexor tendon bed often necessitate a two-stage surgical reconstruction, where a silicone spacer is used in the first stage to recreate the fibro-osseous tunnel through which the tendon graft can glide in the second stage. This staged procedure involves great commitment on the part of both patient and surgeon, over the course of several months, involving a prolonged period of rehabilitation that can be quite disruptive to the patient's life and work. Reducing this from a two-stage into a single-stage procedure, therefore, has the potential to reduce rehabilitation time and cost, expedite return to work, and improve outcomes. To address this, we developed polyurethane (PU) nanocomposite, as an engineered tendon sheath, for treatment of delayed flexor tendon division as a single-stage procedure. The clinically conformant tubular grafts were tested for their efficacy in the peroneus tertius tendon of 6 Mule sheep for 3 months. Semi-quantitative histological assessment was carried out by analysing four descriptive layers: tendon, tendon/polymer sheath interface, polymer sheath, and polymer sheath/surrounding tissue. Four (out of 6) of the implanted PU nanocomposites showed moderate to substantial healing of the injured tendons, with minimal adhesion after repair, ensuring good gliding movement. No statistical differences were observed in tendon repair based on intra-regional variation in the explanted grafts, indicating homogeneity in tendon repair. Overall, the PU nanocomposite bears morphological stability and functionality for tendon repair, in single-stage surgical reconstruction, demonstrating promising evidence for clinical translation.

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer