People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barbosa, P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Poly(4-styrene sulfonic acid)/bacterial cellulose membranes: Electrochemical performance in a single-chamber microbial fuel cell
Abstract
The present work aims at exploiting a polyelectrolyte nanocomposite based on poly(4-styrene sulfonic acid) (PSSA) and bacterial cellulose (BC) as an eco-friendly proton-exchange membrane (PEM) for application in microbial fuel cells (MFCs). The PSSA/BC-based PEM was confirmed as a true nanocomposite by inelastic neutron scattering (INS) vibrational spectroscopy. Moreover, this PEM exhibited thermal stability up to 155 °C, Young's modulus of 11.7 ± 0.9 GPa, ion exchange capacity of 1.85 mmol g− 1, and maximum protonic conductivity of 1.73 S m− 1. The application of the PSSA/BC nanocomposite membrane in a single-chamber lab-scale MFC with a pure culture of Shewanella frigidimarina yielded a maximum power density of 2.42 mW m− 2, open circuit voltage of 0.436 V, and internal resistance of 15.1 kΩ. These results are superior to those obtained with a commercial Nafion® membrane and, thus, confirm the potential of this bio-based PSSA/BC nanocomposite as a PEM for MFCs. © 2019 Elsevier Ltd