People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Eckold, David
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
article
Bio-Tribo-Acoustic Emissions: Condition Monitoring of a Simulated Joint Articulation
Abstract
Acoustic emissions have been used to interpret the frictional processes observed in a simulated metal-on-polymer joint replacement articulation during in vitro testing. The coefficient of friction profile is predicted from AE features using a nonlinear autoregressive neural network with an external input model, and the evolution of surface damage is identified using k-means clustering of the distribution of emission types from running-in to prolonged sliding states. The predicted coefficient of friction profiles were found to exhibit a similar response to the actual coefficient of friction profiles. Clustering showed that a higher percentage of continuous emissions are generated during the prolonged sliding stage, indicating sliding friction being the most dominant process during that state. The findings of this study provide a significant pathway toward achieving the potential of AE testing as a more intuitive and dynamic process of monitoring the tribological conditions of artificial joints and diagnosing the pathologies of the natural joints.