Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oliveira, Miguel Noronha

  • Google
  • 1
  • 6
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020PEEK-matrix composites containing different content of natural silica fibers or particulate lithium‑zirconium silicate glass fillers16citations

Places of action

Chart of shared publication
Gomes, José R.
1 / 8 shared
Henriques, Bruno
1 / 64 shared
Correia, Marta S. T.
1 / 2 shared
Silva, Filipe S.
1 / 36 shared
Oliveira, Antonio P. Novaes De
1 / 7 shared
Matias De Souza, Júlio César
1 / 75 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Gomes, José R.
  • Henriques, Bruno
  • Correia, Marta S. T.
  • Silva, Filipe S.
  • Oliveira, Antonio P. Novaes De
  • Matias De Souza, Júlio César
OrganizationsLocationPeople

article

PEEK-matrix composites containing different content of natural silica fibers or particulate lithium‑zirconium silicate glass fillers

  • Gomes, José R.
  • Henriques, Bruno
  • Correia, Marta S. T.
  • Silva, Filipe S.
  • Oliveira, Miguel Noronha
  • Oliveira, Antonio P. Novaes De
  • Matias De Souza, Júlio César
Abstract

<p>The purpose of this work was to evaluate the friction and sliding wear behavior of poly-ether-ether ketone (PEEK) matrix composites containing natural amorphous silica fibers (NASF) or particulate lithium‑zirconium silicate (LZSA) glass-ceramics. PEEK and PEEK containing different weight content (10, 20, and 30 wt%) of LZSA or NASF were processed by hot pressing. Reciprocating sliding wear tests were performed on the specimens in artificial saliva solution against an alumina ball on 30 N normal force. Tests were performed at 1 Hz sliding frequency, and at 4 mm stroke length in artificial saliva solution. The worn surfaces were morphologically inspected by field emission guns scanning electron microscopy (FEGSEM) to calculate the wear volume. Coefficient of friction values recorded on PEEK or PEEK-NASF composites against alumina were lower than those on PEEK-LZSA composites. The presence of LZSA particles negatively affected the wear resistance of the PEEK composites. On sliding tests mimicking oral conditions, PEEK composites containing NASF revealed low friction and high wear resistance close to that one exhibited by PEEK. Such results can stimulate further studies on the processing and tribological characterization of PEEK composites including different percentage of natural amorphous silica fibers.</p>

Topics
  • surface
  • amorphous
  • scanning electron microscopy
  • glass
  • glass
  • zirconium
  • wear resistance
  • wear test
  • composite
  • Lithium
  • ceramic
  • ketone
  • coefficient of friction
  • hot pressing