People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zia, Asif I.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2016Improved detection limits for phthalates by selective solid-phase micro-extractioncitations
- 2015Rapid and molecular selective electrochemical sensing of phthalates in aqueous solutioncitations
- 2015Development of a sensing system to detect C-telopeptide of type-I collagencitations
- 2014Introducing molecular selectivity in rapid impedimetric sensing of phthalatescitations
- 2013MEMS based impedimetric sensing of phthalatescitations
- 2013Ovarian Hormone Estrone Glucuronide (E1G) quantification-impedimetric electrochemical spectroscopy approachcitations
- 2013Technique for rapid detection of phthalates in water and beveragescitations
- 2013Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juicescitations
- 2012Sensor and instrumentation for progesterone detectioncitations
Places of action
Organizations | Location | People |
---|
article
Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution
Abstract
<p>Reported research work presents real time non-invasive detection of phthalates in spiked aqueous samples by employing electrochemical impedance spectroscopy (EIS) technique incorporating a novel interdigital capacitive sensor with multiple sensing thin film gold micro-electrodes fabricated on native silicon dioxide layer grown on semiconducting single crystal silicon wafer. The sensing surface was functionalized by a self-assembled monolayer of 3-aminopropyltrietoxysilane (APTES) with embedded molecular imprinted polymer (MIP) to introduce selectivity for the di(2-ethylhexyl) phthalate (DEHP) molecule. Various concentrations (1-100. ppm) of DEHP in deionized MilliQ water were tested using the functionalized sensing surface to capture the analyte. Frequency response analyzer (FRA) algorithm was used to obtain impedance spectra so as to determine sample conductance and capacitance for evaluation of phthalate concentration in the sample solution. Spectrum analysis algorithm interpreted the experimentally obtained impedance spectra by applying complex nonlinear least square (CNLS) curve fitting in order to obtain electrochemical equivalent circuit and corresponding circuit parameters describing the kinetics of the electrochemical cell. Principal component analysis was applied to deduce the effects of surface immobilized molecular imprinted polymer layer on the evaluated circuit parameters and its electrical response. The results obtained by the testing system were validated using commercially available high performance liquid chromatography diode array detector system.</p>